]> andersk Git - openssh.git/blame - moduli.c
- stevesk@cvs.openbsd.org 2006/07/22 20:48:23
[openssh.git] / moduli.c
CommitLineData
00146caa 1/* $OpenBSD: moduli.c,v 1.15 2006/07/22 20:48:23 stevesk Exp $ */
5ae3dc68 2/*
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Two-step process to generate safe primes for DHGEX
31 *
32 * Sieve candidates for "safe" primes,
33 * suitable for use as Diffie-Hellman moduli;
34 * that is, where q = (p-1)/2 is also prime.
35 *
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
38 */
39
40#include "includes.h"
b0f6943a 41
42#include <sys/types.h>
5ae3dc68 43
44#include <openssl/bn.h>
45
00146caa 46#include <string.h>
b0f6943a 47#include <time.h>
48
49#include "xmalloc.h"
50#include "log.h"
51
5ae3dc68 52/*
53 * File output defines
54 */
55
56/* need line long enough for largest moduli plus headers */
f2107e97 57#define QLINESIZE (100+8192)
5ae3dc68 58
59/* Type: decimal.
60 * Specifies the internal structure of the prime modulus.
61 */
f2107e97 62#define QTYPE_UNKNOWN (0)
63#define QTYPE_UNSTRUCTURED (1)
64#define QTYPE_SAFE (2)
1d03d1ad 65#define QTYPE_SCHNORR (3)
f2107e97 66#define QTYPE_SOPHIE_GERMAIN (4)
67#define QTYPE_STRONG (5)
5ae3dc68 68
69/* Tests: decimal (bit field).
70 * Specifies the methods used in checking for primality.
71 * Usually, more than one test is used.
72 */
f2107e97 73#define QTEST_UNTESTED (0x00)
74#define QTEST_COMPOSITE (0x01)
75#define QTEST_SIEVE (0x02)
76#define QTEST_MILLER_RABIN (0x04)
77#define QTEST_JACOBI (0x08)
78#define QTEST_ELLIPTIC (0x10)
5ae3dc68 79
c6fbc95a 80/*
81 * Size: decimal.
5ae3dc68 82 * Specifies the number of the most significant bit (0 to M).
c6fbc95a 83 * WARNING: internally, usually 1 to N.
5ae3dc68 84 */
f2107e97 85#define QSIZE_MINIMUM (511)
5ae3dc68 86
87/*
88 * Prime sieving defines
89 */
90
91/* Constant: assuming 8 bit bytes and 32 bit words */
f2107e97 92#define SHIFT_BIT (3)
93#define SHIFT_BYTE (2)
94#define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
95#define SHIFT_MEGABYTE (20)
96#define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
5ae3dc68 97
20eea1d7 98/*
99 * Using virtual memory can cause thrashing. This should be the largest
100 * number that is supported without a large amount of disk activity --
101 * that would increase the run time from hours to days or weeks!
102 */
f2107e97 103#define LARGE_MINIMUM (8UL) /* megabytes */
20eea1d7 104
105/*
106 * Do not increase this number beyond the unsigned integer bit size.
107 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
108 */
f2107e97 109#define LARGE_MAXIMUM (127UL) /* megabytes */
20eea1d7 110
5ae3dc68 111/*
112 * Constant: when used with 32-bit integers, the largest sieve prime
113 * has to be less than 2**32.
114 */
f2107e97 115#define SMALL_MAXIMUM (0xffffffffUL)
5ae3dc68 116
117/* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
f2107e97 118#define TINY_NUMBER (1UL<<16)
5ae3dc68 119
120/* Ensure enough bit space for testing 2*q. */
4e2e5cfd 121#define TEST_MAXIMUM (1UL<<16)
122#define TEST_MINIMUM (QSIZE_MINIMUM + 1)
123/* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
124#define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
5ae3dc68 125
126/* bit operations on 32-bit words */
4e2e5cfd 127#define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
128#define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
129#define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
5ae3dc68 130
131/*
132 * Prime testing defines
133 */
134
20eea1d7 135/* Minimum number of primality tests to perform */
4e2e5cfd 136#define TRIAL_MINIMUM (4)
20eea1d7 137
5ae3dc68 138/*
139 * Sieving data (XXX - move to struct)
140 */
141
142/* sieve 2**16 */
143static u_int32_t *TinySieve, tinybits;
144
145/* sieve 2**30 in 2**16 parts */
146static u_int32_t *SmallSieve, smallbits, smallbase;
147
148/* sieve relative to the initial value */
149static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
150static u_int32_t largebits, largememory; /* megabytes */
151static BIGNUM *largebase;
152
c784ae09 153int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
7e9a0e92 154int prime_test(FILE *, FILE *, u_int32_t, u_int32_t);
5ae3dc68 155
156/*
157 * print moduli out in consistent form,
158 */
159static int
160qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
161 u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
162{
163 struct tm *gtm;
164 time_t time_now;
165 int res;
166
167 time(&time_now);
168 gtm = gmtime(&time_now);
b6453d99 169
5ae3dc68 170 res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
171 gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
172 gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
173 otype, otests, otries, osize, ogenerator);
174
175 if (res < 0)
176 return (-1);
177
178 if (BN_print_fp(ofile, omodulus) < 1)
179 return (-1);
180
181 res = fprintf(ofile, "\n");
182 fflush(ofile);
183
184 return (res > 0 ? 0 : -1);
185}
186
187
188/*
189 ** Sieve p's and q's with small factors
190 */
191static void
192sieve_large(u_int32_t s)
193{
194 u_int32_t r, u;
195
c6fbc95a 196 debug3("sieve_large %u", s);
5ae3dc68 197 largetries++;
198 /* r = largebase mod s */
199 r = BN_mod_word(largebase, s);
200 if (r == 0)
201 u = 0; /* s divides into largebase exactly */
202 else
203 u = s - r; /* largebase+u is first entry divisible by s */
204
205 if (u < largebits * 2) {
206 /*
207 * The sieve omits p's and q's divisible by 2, so ensure that
208 * largebase+u is odd. Then, step through the sieve in
209 * increments of 2*s
210 */
211 if (u & 0x1)
212 u += s; /* Make largebase+u odd, and u even */
213
214 /* Mark all multiples of 2*s */
215 for (u /= 2; u < largebits; u += s)
216 BIT_SET(LargeSieve, u);
217 }
218
219 /* r = p mod s */
220 r = (2 * r + 1) % s;
221 if (r == 0)
222 u = 0; /* s divides p exactly */
223 else
224 u = s - r; /* p+u is first entry divisible by s */
225
226 if (u < largebits * 4) {
227 /*
228 * The sieve omits p's divisible by 4, so ensure that
229 * largebase+u is not. Then, step through the sieve in
230 * increments of 4*s
231 */
232 while (u & 0x3) {
233 if (SMALL_MAXIMUM - u < s)
234 return;
235 u += s;
236 }
237
238 /* Mark all multiples of 4*s */
239 for (u /= 4; u < largebits; u += s)
240 BIT_SET(LargeSieve, u);
241 }
242}
243
244/*
df5a0d7e 245 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
5ae3dc68 246 * to standard output.
247 * The list is checked against small known primes (less than 2**30).
248 */
249int
c784ae09 250gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
5ae3dc68 251{
252 BIGNUM *q;
253 u_int32_t j, r, s, t;
254 u_int32_t smallwords = TINY_NUMBER >> 6;
255 u_int32_t tinywords = TINY_NUMBER >> 6;
256 time_t time_start, time_stop;
c784ae09 257 u_int32_t i;
258 int ret = 0;
5ae3dc68 259
260 largememory = memory;
261
20eea1d7 262 if (memory != 0 &&
4e2e5cfd 263 (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
20eea1d7 264 error("Invalid memory amount (min %ld, max %ld)",
265 LARGE_MINIMUM, LARGE_MAXIMUM);
266 return (-1);
267 }
268
5ae3dc68 269 /*
aff51935 270 * Set power to the length in bits of the prime to be generated.
271 * This is changed to 1 less than the desired safe prime moduli p.
272 */
5ae3dc68 273 if (power > TEST_MAXIMUM) {
274 error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
275 return (-1);
276 } else if (power < TEST_MINIMUM) {
277 error("Too few bits: %u < %u", power, TEST_MINIMUM);
278 return (-1);
279 }
280 power--; /* decrement before squaring */
281
282 /*
aff51935 283 * The density of ordinary primes is on the order of 1/bits, so the
284 * density of safe primes should be about (1/bits)**2. Set test range
285 * to something well above bits**2 to be reasonably sure (but not
286 * guaranteed) of catching at least one safe prime.
5ae3dc68 287 */
288 largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
289
290 /*
aff51935 291 * Need idea of how much memory is available. We don't have to use all
292 * of it.
5ae3dc68 293 */
294 if (largememory > LARGE_MAXIMUM) {
295 logit("Limited memory: %u MB; limit %lu MB",
296 largememory, LARGE_MAXIMUM);
297 largememory = LARGE_MAXIMUM;
298 }
299
300 if (largewords <= (largememory << SHIFT_MEGAWORD)) {
301 logit("Increased memory: %u MB; need %u bytes",
302 largememory, (largewords << SHIFT_BYTE));
303 largewords = (largememory << SHIFT_MEGAWORD);
304 } else if (largememory > 0) {
305 logit("Decreased memory: %u MB; want %u bytes",
306 largememory, (largewords << SHIFT_BYTE));
307 largewords = (largememory << SHIFT_MEGAWORD);
308 }
309
52e3daed 310 TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
5ae3dc68 311 tinybits = tinywords << SHIFT_WORD;
312
52e3daed 313 SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
5ae3dc68 314 smallbits = smallwords << SHIFT_WORD;
315
316 /*
317 * dynamically determine available memory
318 */
319 while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
320 largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
321
322 largebits = largewords << SHIFT_WORD;
323 largenumbers = largebits * 2; /* even numbers excluded */
324
325 /* validation check: count the number of primes tried */
326 largetries = 0;
327 q = BN_new();
328
329 /*
aff51935 330 * Generate random starting point for subprime search, or use
331 * specified parameter.
5ae3dc68 332 */
333 largebase = BN_new();
334 if (start == NULL)
335 BN_rand(largebase, power, 1, 1);
336 else
337 BN_copy(largebase, start);
338
339 /* ensure odd */
340 BN_set_bit(largebase, 0);
341
342 time(&time_start);
343
aff51935 344 logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
5ae3dc68 345 largenumbers, power);
346 debug2("start point: 0x%s", BN_bn2hex(largebase));
347
348 /*
aff51935 349 * TinySieve
350 */
5ae3dc68 351 for (i = 0; i < tinybits; i++) {
352 if (BIT_TEST(TinySieve, i))
353 continue; /* 2*i+3 is composite */
354
355 /* The next tiny prime */
356 t = 2 * i + 3;
357
358 /* Mark all multiples of t */
359 for (j = i + t; j < tinybits; j += t)
360 BIT_SET(TinySieve, j);
361
362 sieve_large(t);
363 }
364
365 /*
aff51935 366 * Start the small block search at the next possible prime. To avoid
367 * fencepost errors, the last pass is skipped.
368 */
5ae3dc68 369 for (smallbase = TINY_NUMBER + 3;
4e2e5cfd 370 smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
371 smallbase += TINY_NUMBER) {
5ae3dc68 372 for (i = 0; i < tinybits; i++) {
373 if (BIT_TEST(TinySieve, i))
374 continue; /* 2*i+3 is composite */
375
376 /* The next tiny prime */
377 t = 2 * i + 3;
378 r = smallbase % t;
379
380 if (r == 0) {
381 s = 0; /* t divides into smallbase exactly */
382 } else {
383 /* smallbase+s is first entry divisible by t */
384 s = t - r;
385 }
386
387 /*
388 * The sieve omits even numbers, so ensure that
389 * smallbase+s is odd. Then, step through the sieve
390 * in increments of 2*t
391 */
392 if (s & 1)
393 s += t; /* Make smallbase+s odd, and s even */
394
395 /* Mark all multiples of 2*t */
396 for (s /= 2; s < smallbits; s += t)
397 BIT_SET(SmallSieve, s);
398 }
399
400 /*
aff51935 401 * SmallSieve
402 */
5ae3dc68 403 for (i = 0; i < smallbits; i++) {
404 if (BIT_TEST(SmallSieve, i))
405 continue; /* 2*i+smallbase is composite */
406
407 /* The next small prime */
408 sieve_large((2 * i) + smallbase);
409 }
410
411 memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
412 }
413
414 time(&time_stop);
415
416 logit("%.24s Sieved with %u small primes in %ld seconds",
417 ctime(&time_stop), largetries, (long) (time_stop - time_start));
418
419 for (j = r = 0; j < largebits; j++) {
420 if (BIT_TEST(LargeSieve, j))
421 continue; /* Definitely composite, skip */
422
423 debug2("test q = largebase+%u", 2 * j);
424 BN_set_word(q, 2 * j);
425 BN_add(q, q, largebase);
df5a0d7e 426 if (qfileout(out, QTYPE_SOPHIE_GERMAIN, QTEST_SIEVE,
5ae3dc68 427 largetries, (power - 1) /* MSB */, (0), q) == -1) {
428 ret = -1;
429 break;
430 }
431
432 r++; /* count q */
433 }
434
435 time(&time_stop);
436
437 xfree(LargeSieve);
438 xfree(SmallSieve);
439 xfree(TinySieve);
440
441 logit("%.24s Found %u candidates", ctime(&time_stop), r);
442
443 return (ret);
444}
445
446/*
447 * perform a Miller-Rabin primality test
448 * on the list of candidates
449 * (checking both q and p)
450 * The result is a list of so-call "safe" primes
451 */
452int
20eea1d7 453prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted)
5ae3dc68 454{
455 BIGNUM *q, *p, *a;
456 BN_CTX *ctx;
457 char *cp, *lp;
458 u_int32_t count_in = 0, count_out = 0, count_possible = 0;
459 u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
460 time_t time_start, time_stop;
461 int res;
462
20eea1d7 463 if (trials < TRIAL_MINIMUM) {
464 error("Minimum primality trials is %d", TRIAL_MINIMUM);
465 return (-1);
466 }
467
5ae3dc68 468 time(&time_start);
469
470 p = BN_new();
471 q = BN_new();
472 ctx = BN_CTX_new();
473
474 debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
475 ctime(&time_start), trials, generator_wanted);
476
477 res = 0;
478 lp = xmalloc(QLINESIZE + 1);
479 while (fgets(lp, QLINESIZE, in) != NULL) {
480 int ll = strlen(lp);
481
482 count_in++;
483 if (ll < 14 || *lp == '!' || *lp == '#') {
484 debug2("%10u: comment or short line", count_in);
485 continue;
486 }
487
488 /* XXX - fragile parser */
489 /* time */
490 cp = &lp[14]; /* (skip) */
491
492 /* type */
493 in_type = strtoul(cp, &cp, 10);
494
495 /* tests */
496 in_tests = strtoul(cp, &cp, 10);
497
498 if (in_tests & QTEST_COMPOSITE) {
499 debug2("%10u: known composite", count_in);
500 continue;
501 }
c6fbc95a 502
5ae3dc68 503 /* tries */
504 in_tries = strtoul(cp, &cp, 10);
505
506 /* size (most significant bit) */
507 in_size = strtoul(cp, &cp, 10);
508
509 /* generator (hex) */
510 generator_known = strtoul(cp, &cp, 16);
511
512 /* Skip white space */
513 cp += strspn(cp, " ");
514
515 /* modulus (hex) */
516 switch (in_type) {
df5a0d7e 517 case QTYPE_SOPHIE_GERMAIN:
518 debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
5ae3dc68 519 a = q;
520 BN_hex2bn(&a, cp);
521 /* p = 2*q + 1 */
522 BN_lshift(p, q, 1);
523 BN_add_word(p, 1);
524 in_size += 1;
525 generator_known = 0;
526 break;
c6fbc95a 527 case QTYPE_UNSTRUCTURED:
528 case QTYPE_SAFE:
1d03d1ad 529 case QTYPE_SCHNORR:
c6fbc95a 530 case QTYPE_STRONG:
531 case QTYPE_UNKNOWN:
5ae3dc68 532 debug2("%10u: (%u)", count_in, in_type);
533 a = p;
534 BN_hex2bn(&a, cp);
535 /* q = (p-1) / 2 */
536 BN_rshift(q, p, 1);
537 break;
c6fbc95a 538 default:
539 debug2("Unknown prime type");
540 break;
5ae3dc68 541 }
542
543 /*
544 * due to earlier inconsistencies in interpretation, check
545 * the proposed bit size.
546 */
c784ae09 547 if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
5ae3dc68 548 debug2("%10u: bit size %u mismatch", count_in, in_size);
549 continue;
550 }
551 if (in_size < QSIZE_MINIMUM) {
552 debug2("%10u: bit size %u too short", count_in, in_size);
553 continue;
554 }
555
556 if (in_tests & QTEST_MILLER_RABIN)
557 in_tries += trials;
558 else
559 in_tries = trials;
c6fbc95a 560
5ae3dc68 561 /*
562 * guess unknown generator
563 */
564 if (generator_known == 0) {
565 if (BN_mod_word(p, 24) == 11)
566 generator_known = 2;
567 else if (BN_mod_word(p, 12) == 5)
568 generator_known = 3;
569 else {
570 u_int32_t r = BN_mod_word(p, 10);
571
c6fbc95a 572 if (r == 3 || r == 7)
5ae3dc68 573 generator_known = 5;
5ae3dc68 574 }
575 }
576 /*
577 * skip tests when desired generator doesn't match
578 */
579 if (generator_wanted > 0 &&
580 generator_wanted != generator_known) {
581 debug2("%10u: generator %d != %d",
582 count_in, generator_known, generator_wanted);
583 continue;
584 }
585
eb7a33b8 586 /*
587 * Primes with no known generator are useless for DH, so
588 * skip those.
589 */
590 if (generator_known == 0) {
591 debug2("%10u: no known generator", count_in);
592 continue;
593 }
594
5ae3dc68 595 count_possible++;
596
597 /*
aff51935 598 * The (1/4)^N performance bound on Miller-Rabin is
599 * extremely pessimistic, so don't spend a lot of time
600 * really verifying that q is prime until after we know
601 * that p is also prime. A single pass will weed out the
5ae3dc68 602 * vast majority of composite q's.
603 */
604 if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) {
c6fbc95a 605 debug("%10u: q failed first possible prime test",
5ae3dc68 606 count_in);
607 continue;
608 }
b6453d99 609
5ae3dc68 610 /*
aff51935 611 * q is possibly prime, so go ahead and really make sure
612 * that p is prime. If it is, then we can go back and do
613 * the same for q. If p is composite, chances are that
5ae3dc68 614 * will show up on the first Rabin-Miller iteration so it
615 * doesn't hurt to specify a high iteration count.
616 */
617 if (!BN_is_prime(p, trials, NULL, ctx, NULL)) {
c6fbc95a 618 debug("%10u: p is not prime", count_in);
5ae3dc68 619 continue;
620 }
621 debug("%10u: p is almost certainly prime", count_in);
622
623 /* recheck q more rigorously */
624 if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) {
625 debug("%10u: q is not prime", count_in);
626 continue;
627 }
628 debug("%10u: q is almost certainly prime", count_in);
629
aff51935 630 if (qfileout(out, QTYPE_SAFE, (in_tests | QTEST_MILLER_RABIN),
5ae3dc68 631 in_tries, in_size, generator_known, p)) {
632 res = -1;
633 break;
634 }
635
636 count_out++;
637 }
638
639 time(&time_stop);
640 xfree(lp);
641 BN_free(p);
642 BN_free(q);
643 BN_CTX_free(ctx);
644
645 logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
aff51935 646 ctime(&time_stop), count_out, count_possible,
5ae3dc68 647 (long) (time_stop - time_start));
648
649 return (res);
650}
This page took 0.201245 seconds and 5 git commands to generate.