]> andersk Git - openssh.git/blame - moduli.c
- (dtucker) [README.platform] List prereqs for building on Cygwin.
[openssh.git] / moduli.c
CommitLineData
c6fbc95a 1/* $OpenBSD: moduli.c,v 1.5 2003/12/22 09:16:57 djm Exp $ */
5ae3dc68 2/*
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Two-step process to generate safe primes for DHGEX
31 *
32 * Sieve candidates for "safe" primes,
33 * suitable for use as Diffie-Hellman moduli;
34 * that is, where q = (p-1)/2 is also prime.
35 *
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
38 */
39
40#include "includes.h"
41#include "moduli.h"
42#include "xmalloc.h"
43#include "log.h"
44
45#include <openssl/bn.h>
46
5ae3dc68 47/*
48 * File output defines
49 */
50
51/* need line long enough for largest moduli plus headers */
52#define QLINESIZE (100+8192)
53
54/* Type: decimal.
55 * Specifies the internal structure of the prime modulus.
56 */
57#define QTYPE_UNKNOWN (0)
58#define QTYPE_UNSTRUCTURED (1)
59#define QTYPE_SAFE (2)
60#define QTYPE_SCHNOOR (3)
61#define QTYPE_SOPHIE_GERMAINE (4)
62#define QTYPE_STRONG (5)
63
64/* Tests: decimal (bit field).
65 * Specifies the methods used in checking for primality.
66 * Usually, more than one test is used.
67 */
68#define QTEST_UNTESTED (0x00)
69#define QTEST_COMPOSITE (0x01)
70#define QTEST_SIEVE (0x02)
71#define QTEST_MILLER_RABIN (0x04)
72#define QTEST_JACOBI (0x08)
73#define QTEST_ELLIPTIC (0x10)
74
c6fbc95a 75/*
76 * Size: decimal.
5ae3dc68 77 * Specifies the number of the most significant bit (0 to M).
c6fbc95a 78 * WARNING: internally, usually 1 to N.
5ae3dc68 79 */
80#define QSIZE_MINIMUM (511)
81
82/*
83 * Prime sieving defines
84 */
85
86/* Constant: assuming 8 bit bytes and 32 bit words */
87#define SHIFT_BIT (3)
88#define SHIFT_BYTE (2)
89#define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
90#define SHIFT_MEGABYTE (20)
91#define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
92
93/*
94 * Constant: when used with 32-bit integers, the largest sieve prime
95 * has to be less than 2**32.
96 */
97#define SMALL_MAXIMUM (0xffffffffUL)
98
99/* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
100#define TINY_NUMBER (1UL<<16)
101
102/* Ensure enough bit space for testing 2*q. */
103#define TEST_MAXIMUM (1UL<<16)
104#define TEST_MINIMUM (QSIZE_MINIMUM + 1)
105/* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
106#define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
107
108/* bit operations on 32-bit words */
109#define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
110#define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
111#define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
112
113/*
114 * Prime testing defines
115 */
116
117/*
118 * Sieving data (XXX - move to struct)
119 */
120
121/* sieve 2**16 */
122static u_int32_t *TinySieve, tinybits;
123
124/* sieve 2**30 in 2**16 parts */
125static u_int32_t *SmallSieve, smallbits, smallbase;
126
127/* sieve relative to the initial value */
128static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
129static u_int32_t largebits, largememory; /* megabytes */
130static BIGNUM *largebase;
131
132
133/*
134 * print moduli out in consistent form,
135 */
136static int
137qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
138 u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
139{
140 struct tm *gtm;
141 time_t time_now;
142 int res;
143
144 time(&time_now);
145 gtm = gmtime(&time_now);
b6453d99 146
5ae3dc68 147 res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
148 gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
149 gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
150 otype, otests, otries, osize, ogenerator);
151
152 if (res < 0)
153 return (-1);
154
155 if (BN_print_fp(ofile, omodulus) < 1)
156 return (-1);
157
158 res = fprintf(ofile, "\n");
159 fflush(ofile);
160
161 return (res > 0 ? 0 : -1);
162}
163
164
165/*
166 ** Sieve p's and q's with small factors
167 */
168static void
169sieve_large(u_int32_t s)
170{
171 u_int32_t r, u;
172
c6fbc95a 173 debug3("sieve_large %u", s);
5ae3dc68 174 largetries++;
175 /* r = largebase mod s */
176 r = BN_mod_word(largebase, s);
177 if (r == 0)
178 u = 0; /* s divides into largebase exactly */
179 else
180 u = s - r; /* largebase+u is first entry divisible by s */
181
182 if (u < largebits * 2) {
183 /*
184 * The sieve omits p's and q's divisible by 2, so ensure that
185 * largebase+u is odd. Then, step through the sieve in
186 * increments of 2*s
187 */
188 if (u & 0x1)
189 u += s; /* Make largebase+u odd, and u even */
190
191 /* Mark all multiples of 2*s */
192 for (u /= 2; u < largebits; u += s)
193 BIT_SET(LargeSieve, u);
194 }
195
196 /* r = p mod s */
197 r = (2 * r + 1) % s;
198 if (r == 0)
199 u = 0; /* s divides p exactly */
200 else
201 u = s - r; /* p+u is first entry divisible by s */
202
203 if (u < largebits * 4) {
204 /*
205 * The sieve omits p's divisible by 4, so ensure that
206 * largebase+u is not. Then, step through the sieve in
207 * increments of 4*s
208 */
209 while (u & 0x3) {
210 if (SMALL_MAXIMUM - u < s)
211 return;
212 u += s;
213 }
214
215 /* Mark all multiples of 4*s */
216 for (u /= 4; u < largebits; u += s)
217 BIT_SET(LargeSieve, u);
218 }
219}
220
221/*
222 * list candidates for Sophie-Germaine primes (where q = (p-1)/2)
223 * to standard output.
224 * The list is checked against small known primes (less than 2**30).
225 */
226int
227gen_candidates(FILE *out, int memory, int power, BIGNUM *start)
228{
229 BIGNUM *q;
230 u_int32_t j, r, s, t;
231 u_int32_t smallwords = TINY_NUMBER >> 6;
232 u_int32_t tinywords = TINY_NUMBER >> 6;
233 time_t time_start, time_stop;
234 int i, ret = 0;
235
236 largememory = memory;
237
238 /*
aff51935 239 * Set power to the length in bits of the prime to be generated.
240 * This is changed to 1 less than the desired safe prime moduli p.
241 */
5ae3dc68 242 if (power > TEST_MAXIMUM) {
243 error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
244 return (-1);
245 } else if (power < TEST_MINIMUM) {
246 error("Too few bits: %u < %u", power, TEST_MINIMUM);
247 return (-1);
248 }
249 power--; /* decrement before squaring */
250
251 /*
aff51935 252 * The density of ordinary primes is on the order of 1/bits, so the
253 * density of safe primes should be about (1/bits)**2. Set test range
254 * to something well above bits**2 to be reasonably sure (but not
255 * guaranteed) of catching at least one safe prime.
5ae3dc68 256 */
257 largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
258
259 /*
aff51935 260 * Need idea of how much memory is available. We don't have to use all
261 * of it.
5ae3dc68 262 */
263 if (largememory > LARGE_MAXIMUM) {
264 logit("Limited memory: %u MB; limit %lu MB",
265 largememory, LARGE_MAXIMUM);
266 largememory = LARGE_MAXIMUM;
267 }
268
269 if (largewords <= (largememory << SHIFT_MEGAWORD)) {
270 logit("Increased memory: %u MB; need %u bytes",
271 largememory, (largewords << SHIFT_BYTE));
272 largewords = (largememory << SHIFT_MEGAWORD);
273 } else if (largememory > 0) {
274 logit("Decreased memory: %u MB; want %u bytes",
275 largememory, (largewords << SHIFT_BYTE));
276 largewords = (largememory << SHIFT_MEGAWORD);
277 }
278
279 TinySieve = calloc(tinywords, sizeof(u_int32_t));
280 if (TinySieve == NULL) {
281 error("Insufficient memory for tiny sieve: need %u bytes",
282 tinywords << SHIFT_BYTE);
283 exit(1);
284 }
285 tinybits = tinywords << SHIFT_WORD;
286
287 SmallSieve = calloc(smallwords, sizeof(u_int32_t));
288 if (SmallSieve == NULL) {
289 error("Insufficient memory for small sieve: need %u bytes",
290 smallwords << SHIFT_BYTE);
291 xfree(TinySieve);
292 exit(1);
293 }
294 smallbits = smallwords << SHIFT_WORD;
295
296 /*
297 * dynamically determine available memory
298 */
299 while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
300 largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
301
302 largebits = largewords << SHIFT_WORD;
303 largenumbers = largebits * 2; /* even numbers excluded */
304
305 /* validation check: count the number of primes tried */
306 largetries = 0;
307 q = BN_new();
308
309 /*
aff51935 310 * Generate random starting point for subprime search, or use
311 * specified parameter.
5ae3dc68 312 */
313 largebase = BN_new();
314 if (start == NULL)
315 BN_rand(largebase, power, 1, 1);
316 else
317 BN_copy(largebase, start);
318
319 /* ensure odd */
320 BN_set_bit(largebase, 0);
321
322 time(&time_start);
323
aff51935 324 logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
5ae3dc68 325 largenumbers, power);
326 debug2("start point: 0x%s", BN_bn2hex(largebase));
327
328 /*
aff51935 329 * TinySieve
330 */
5ae3dc68 331 for (i = 0; i < tinybits; i++) {
332 if (BIT_TEST(TinySieve, i))
333 continue; /* 2*i+3 is composite */
334
335 /* The next tiny prime */
336 t = 2 * i + 3;
337
338 /* Mark all multiples of t */
339 for (j = i + t; j < tinybits; j += t)
340 BIT_SET(TinySieve, j);
341
342 sieve_large(t);
343 }
344
345 /*
aff51935 346 * Start the small block search at the next possible prime. To avoid
347 * fencepost errors, the last pass is skipped.
348 */
5ae3dc68 349 for (smallbase = TINY_NUMBER + 3;
350 smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
351 smallbase += TINY_NUMBER) {
352 for (i = 0; i < tinybits; i++) {
353 if (BIT_TEST(TinySieve, i))
354 continue; /* 2*i+3 is composite */
355
356 /* The next tiny prime */
357 t = 2 * i + 3;
358 r = smallbase % t;
359
360 if (r == 0) {
361 s = 0; /* t divides into smallbase exactly */
362 } else {
363 /* smallbase+s is first entry divisible by t */
364 s = t - r;
365 }
366
367 /*
368 * The sieve omits even numbers, so ensure that
369 * smallbase+s is odd. Then, step through the sieve
370 * in increments of 2*t
371 */
372 if (s & 1)
373 s += t; /* Make smallbase+s odd, and s even */
374
375 /* Mark all multiples of 2*t */
376 for (s /= 2; s < smallbits; s += t)
377 BIT_SET(SmallSieve, s);
378 }
379
380 /*
aff51935 381 * SmallSieve
382 */
5ae3dc68 383 for (i = 0; i < smallbits; i++) {
384 if (BIT_TEST(SmallSieve, i))
385 continue; /* 2*i+smallbase is composite */
386
387 /* The next small prime */
388 sieve_large((2 * i) + smallbase);
389 }
390
391 memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
392 }
393
394 time(&time_stop);
395
396 logit("%.24s Sieved with %u small primes in %ld seconds",
397 ctime(&time_stop), largetries, (long) (time_stop - time_start));
398
399 for (j = r = 0; j < largebits; j++) {
400 if (BIT_TEST(LargeSieve, j))
401 continue; /* Definitely composite, skip */
402
403 debug2("test q = largebase+%u", 2 * j);
404 BN_set_word(q, 2 * j);
405 BN_add(q, q, largebase);
406 if (qfileout(out, QTYPE_SOPHIE_GERMAINE, QTEST_SIEVE,
407 largetries, (power - 1) /* MSB */, (0), q) == -1) {
408 ret = -1;
409 break;
410 }
411
412 r++; /* count q */
413 }
414
415 time(&time_stop);
416
417 xfree(LargeSieve);
418 xfree(SmallSieve);
419 xfree(TinySieve);
420
421 logit("%.24s Found %u candidates", ctime(&time_stop), r);
422
423 return (ret);
424}
425
426/*
427 * perform a Miller-Rabin primality test
428 * on the list of candidates
429 * (checking both q and p)
430 * The result is a list of so-call "safe" primes
431 */
432int
aff51935 433prime_test(FILE *in, FILE *out, u_int32_t trials,
5ae3dc68 434 u_int32_t generator_wanted)
435{
436 BIGNUM *q, *p, *a;
437 BN_CTX *ctx;
438 char *cp, *lp;
439 u_int32_t count_in = 0, count_out = 0, count_possible = 0;
440 u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
441 time_t time_start, time_stop;
442 int res;
443
444 time(&time_start);
445
446 p = BN_new();
447 q = BN_new();
448 ctx = BN_CTX_new();
449
450 debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
451 ctime(&time_start), trials, generator_wanted);
452
453 res = 0;
454 lp = xmalloc(QLINESIZE + 1);
455 while (fgets(lp, QLINESIZE, in) != NULL) {
456 int ll = strlen(lp);
457
458 count_in++;
459 if (ll < 14 || *lp == '!' || *lp == '#') {
460 debug2("%10u: comment or short line", count_in);
461 continue;
462 }
463
464 /* XXX - fragile parser */
465 /* time */
466 cp = &lp[14]; /* (skip) */
467
468 /* type */
469 in_type = strtoul(cp, &cp, 10);
470
471 /* tests */
472 in_tests = strtoul(cp, &cp, 10);
473
474 if (in_tests & QTEST_COMPOSITE) {
475 debug2("%10u: known composite", count_in);
476 continue;
477 }
c6fbc95a 478
5ae3dc68 479 /* tries */
480 in_tries = strtoul(cp, &cp, 10);
481
482 /* size (most significant bit) */
483 in_size = strtoul(cp, &cp, 10);
484
485 /* generator (hex) */
486 generator_known = strtoul(cp, &cp, 16);
487
488 /* Skip white space */
489 cp += strspn(cp, " ");
490
491 /* modulus (hex) */
492 switch (in_type) {
493 case QTYPE_SOPHIE_GERMAINE:
494 debug2("%10u: (%u) Sophie-Germaine", count_in, in_type);
495 a = q;
496 BN_hex2bn(&a, cp);
497 /* p = 2*q + 1 */
498 BN_lshift(p, q, 1);
499 BN_add_word(p, 1);
500 in_size += 1;
501 generator_known = 0;
502 break;
c6fbc95a 503 case QTYPE_UNSTRUCTURED:
504 case QTYPE_SAFE:
505 case QTYPE_SCHNOOR:
506 case QTYPE_STRONG:
507 case QTYPE_UNKNOWN:
5ae3dc68 508 debug2("%10u: (%u)", count_in, in_type);
509 a = p;
510 BN_hex2bn(&a, cp);
511 /* q = (p-1) / 2 */
512 BN_rshift(q, p, 1);
513 break;
c6fbc95a 514 default:
515 debug2("Unknown prime type");
516 break;
5ae3dc68 517 }
518
519 /*
520 * due to earlier inconsistencies in interpretation, check
521 * the proposed bit size.
522 */
523 if (BN_num_bits(p) != (in_size + 1)) {
524 debug2("%10u: bit size %u mismatch", count_in, in_size);
525 continue;
526 }
527 if (in_size < QSIZE_MINIMUM) {
528 debug2("%10u: bit size %u too short", count_in, in_size);
529 continue;
530 }
531
532 if (in_tests & QTEST_MILLER_RABIN)
533 in_tries += trials;
534 else
535 in_tries = trials;
c6fbc95a 536
5ae3dc68 537 /*
538 * guess unknown generator
539 */
540 if (generator_known == 0) {
541 if (BN_mod_word(p, 24) == 11)
542 generator_known = 2;
543 else if (BN_mod_word(p, 12) == 5)
544 generator_known = 3;
545 else {
546 u_int32_t r = BN_mod_word(p, 10);
547
c6fbc95a 548 if (r == 3 || r == 7)
5ae3dc68 549 generator_known = 5;
5ae3dc68 550 }
551 }
552 /*
553 * skip tests when desired generator doesn't match
554 */
555 if (generator_wanted > 0 &&
556 generator_wanted != generator_known) {
557 debug2("%10u: generator %d != %d",
558 count_in, generator_known, generator_wanted);
559 continue;
560 }
561
eb7a33b8 562 /*
563 * Primes with no known generator are useless for DH, so
564 * skip those.
565 */
566 if (generator_known == 0) {
567 debug2("%10u: no known generator", count_in);
568 continue;
569 }
570
5ae3dc68 571 count_possible++;
572
573 /*
aff51935 574 * The (1/4)^N performance bound on Miller-Rabin is
575 * extremely pessimistic, so don't spend a lot of time
576 * really verifying that q is prime until after we know
577 * that p is also prime. A single pass will weed out the
5ae3dc68 578 * vast majority of composite q's.
579 */
580 if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) {
c6fbc95a 581 debug("%10u: q failed first possible prime test",
5ae3dc68 582 count_in);
583 continue;
584 }
b6453d99 585
5ae3dc68 586 /*
aff51935 587 * q is possibly prime, so go ahead and really make sure
588 * that p is prime. If it is, then we can go back and do
589 * the same for q. If p is composite, chances are that
5ae3dc68 590 * will show up on the first Rabin-Miller iteration so it
591 * doesn't hurt to specify a high iteration count.
592 */
593 if (!BN_is_prime(p, trials, NULL, ctx, NULL)) {
c6fbc95a 594 debug("%10u: p is not prime", count_in);
5ae3dc68 595 continue;
596 }
597 debug("%10u: p is almost certainly prime", count_in);
598
599 /* recheck q more rigorously */
600 if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) {
601 debug("%10u: q is not prime", count_in);
602 continue;
603 }
604 debug("%10u: q is almost certainly prime", count_in);
605
aff51935 606 if (qfileout(out, QTYPE_SAFE, (in_tests | QTEST_MILLER_RABIN),
5ae3dc68 607 in_tries, in_size, generator_known, p)) {
608 res = -1;
609 break;
610 }
611
612 count_out++;
613 }
614
615 time(&time_stop);
616 xfree(lp);
617 BN_free(p);
618 BN_free(q);
619 BN_CTX_free(ctx);
620
621 logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
aff51935 622 ctime(&time_stop), count_out, count_possible,
5ae3dc68 623 (long) (time_stop - time_start));
624
625 return (res);
626}
This page took 2.63908 seconds and 5 git commands to generate.