]> andersk Git - openssh.git/blame - umac.c
- dtucker@cvs.openbsd.org 2007/06/12 13:54:28
[openssh.git] / umac.c
CommitLineData
f444d0f8 1/* $OpenBSD: umac.c,v 1.1 2007/06/07 19:37:34 pvalchev Exp $ */
2/* -----------------------------------------------------------------------
3 *
4 * umac.c -- C Implementation UMAC Message Authentication
5 *
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
7 *
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
11 *
12 * Copyright (c) 1999-2006 Ted Krovetz
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
20 *
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
22 *
23 * ---------------------------------------------------------------------- */
24
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
26 *
27 * 1) This version does not work properly on messages larger than 16MB
28 *
29 * 2) If you set the switch to use SSE2, then all data must be 16-byte
30 * aligned
31 *
32 * 3) When calling the function umac(), it is assumed that msg is in
33 * a writable buffer of length divisible by 32 bytes. The message itself
34 * does not have to fill the entire buffer, but bytes beyond msg may be
35 * zeroed.
36 *
37 * 4) Three free AES implementations are supported by this implementation of
38 * UMAC. Paulo Barreto's version is in the public domain and can be found
39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44 * the third.
45 *
46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47 * produced under gcc with optimizations set -O3 or higher. Dunno why.
48 *
49 /////////////////////////////////////////////////////////////////////// */
50
51/* ---------------------------------------------------------------------- */
52/* --- User Switches ---------------------------------------------------- */
53/* ---------------------------------------------------------------------- */
54
55#define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
56/* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
57/* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
58/* #define SSE2 0 Is SSE2 is available? */
59/* #define RUN_TESTS 0 Run basic correctness/speed tests */
60/* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */
61
62/* ---------------------------------------------------------------------- */
63/* -- Global Includes --------------------------------------------------- */
64/* ---------------------------------------------------------------------- */
65
66#include "includes.h"
67#include <sys/types.h>
68
69#include "umac.h"
70#include <string.h>
71#include <stdlib.h>
72#include <stddef.h>
73
74/* ---------------------------------------------------------------------- */
75/* --- Primitive Data Types --- */
76/* ---------------------------------------------------------------------- */
77
78/* The following assumptions may need change on your system */
79typedef u_int8_t UINT8; /* 1 byte */
80typedef u_int16_t UINT16; /* 2 byte */
81typedef u_int32_t UINT32; /* 4 byte */
82typedef u_int64_t UINT64; /* 8 bytes */
83typedef unsigned int UWORD; /* Register */
84
85/* ---------------------------------------------------------------------- */
86/* --- Constants -------------------------------------------------------- */
87/* ---------------------------------------------------------------------- */
88
89#define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
90
91/* Message "words" are read from memory in an endian-specific manner. */
92/* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
93/* be set true if the host computer is little-endian. */
94
95#if BYTE_ORDER == LITTLE_ENDIAN
96#define __LITTLE_ENDIAN__ 1
97#else
98#define __LITTLE_ENDIAN__ 0
99#endif
100
101/* ---------------------------------------------------------------------- */
102/* ---------------------------------------------------------------------- */
103/* ----- Architecture Specific ------------------------------------------ */
104/* ---------------------------------------------------------------------- */
105/* ---------------------------------------------------------------------- */
106
107
108/* ---------------------------------------------------------------------- */
109/* ---------------------------------------------------------------------- */
110/* ----- Primitive Routines --------------------------------------------- */
111/* ---------------------------------------------------------------------- */
112/* ---------------------------------------------------------------------- */
113
114
115/* ---------------------------------------------------------------------- */
116/* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
117/* ---------------------------------------------------------------------- */
118
119#define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
120
121/* ---------------------------------------------------------------------- */
122/* --- Endian Conversion --- Forcing assembly on some platforms */
123/* ---------------------------------------------------------------------- */
124
1aac2117 125#if HAVE_SWAP32
126#define LOAD_UINT32_REVERSED(p) (swap32(*(UINT32 *)(p)))
127#define STORE_UINT32_REVERSED(p,v) (*(UINT32 *)(p) = swap32(v))
128#else /* HAVE_SWAP32 */
129
f444d0f8 130static UINT32 LOAD_UINT32_REVERSED(void *ptr)
131{
132 UINT32 temp = *(UINT32 *)ptr;
133 temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 )
134 | ((temp & 0x0000FF00) << 8 ) | (temp << 24);
135 return (UINT32)temp;
136}
137
138static void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
139{
140 UINT32 i = (UINT32)x;
141 *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 )
142 | ((i & 0x0000FF00) << 8 ) | (i << 24);
143}
1aac2117 144#endif /* HAVE_SWAP32 */
f444d0f8 145
146/* The following definitions use the above reversal-primitives to do the right
147 * thing on endian specific load and stores.
148 */
149
f444d0f8 150#if (__LITTLE_ENDIAN__)
151#define LOAD_UINT32_LITTLE(ptr) (*(UINT32 *)(ptr))
152#define STORE_UINT32_BIG(ptr,x) STORE_UINT32_REVERSED(ptr,x)
153#else
154#define LOAD_UINT32_LITTLE(ptr) LOAD_UINT32_REVERSED(ptr)
155#define STORE_UINT32_BIG(ptr,x) (*(UINT32 *)(ptr) = (UINT32)(x))
156#endif
157
f444d0f8 158/* ---------------------------------------------------------------------- */
159/* ---------------------------------------------------------------------- */
160/* ----- Begin KDF & PDF Section ---------------------------------------- */
161/* ---------------------------------------------------------------------- */
162/* ---------------------------------------------------------------------- */
163
164/* UMAC uses AES with 16 byte block and key lengths */
165#define AES_BLOCK_LEN 16
166
167/* OpenSSL's AES */
168#include <openssl/aes.h>
169typedef AES_KEY aes_int_key[1];
170#define aes_encryption(in,out,int_key) \
171 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
172#define aes_key_setup(key,int_key) \
173 AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key)
174
175/* The user-supplied UMAC key is stretched using AES in a counter
176 * mode to supply all random bits needed by UMAC. The kdf function takes
177 * an AES internal key representation 'key' and writes a stream of
178 * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
179 * 'ndx' causes a distinct byte stream.
180 */
181static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
182{
183 UINT8 in_buf[AES_BLOCK_LEN] = {0};
184 UINT8 out_buf[AES_BLOCK_LEN];
185 UINT8 *dst_buf = (UINT8 *)buffer_ptr;
186 int i;
187
188 /* Setup the initial value */
189 in_buf[AES_BLOCK_LEN-9] = ndx;
190 in_buf[AES_BLOCK_LEN-1] = i = 1;
191
192 while (nbytes >= AES_BLOCK_LEN) {
193 aes_encryption(in_buf, out_buf, key);
194 memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
195 in_buf[AES_BLOCK_LEN-1] = ++i;
196 nbytes -= AES_BLOCK_LEN;
197 dst_buf += AES_BLOCK_LEN;
198 }
199 if (nbytes) {
200 aes_encryption(in_buf, out_buf, key);
201 memcpy(dst_buf,out_buf,nbytes);
202 }
203}
204
205/* The final UHASH result is XOR'd with the output of a pseudorandom
206 * function. Here, we use AES to generate random output and
207 * xor the appropriate bytes depending on the last bits of nonce.
208 * This scheme is optimized for sequential, increasing big-endian nonces.
209 */
210
211typedef struct {
212 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */
213 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */
214 aes_int_key prf_key; /* Expanded AES key for PDF */
215} pdf_ctx;
216
217static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
218{
219 UINT8 buf[UMAC_KEY_LEN];
220
221 kdf(buf, prf_key, 0, UMAC_KEY_LEN);
222 aes_key_setup(buf, pc->prf_key);
223
224 /* Initialize pdf and cache */
225 memset(pc->nonce, 0, sizeof(pc->nonce));
226 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
227}
228
229static void pdf_gen_xor(pdf_ctx *pc, UINT8 nonce[8], UINT8 buf[8])
230{
231 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
232 * of the AES output. If last time around we returned the ndx-1st
233 * element, then we may have the result in the cache already.
234 */
235
236#if (UMAC_OUTPUT_LEN == 4)
237#define LOW_BIT_MASK 3
238#elif (UMAC_OUTPUT_LEN == 8)
239#define LOW_BIT_MASK 1
240#elif (UMAC_OUTPUT_LEN > 8)
241#define LOW_BIT_MASK 0
242#endif
243
244 UINT8 tmp_nonce_lo[4];
245#if LOW_BIT_MASK != 0
246 int ndx = nonce[7] & LOW_BIT_MASK;
247#endif
248 *(UINT32 *)tmp_nonce_lo = ((UINT32 *)nonce)[1];
249 tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
250
251 if ( (((UINT32 *)tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
252 (((UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
253 {
254 ((UINT32 *)pc->nonce)[0] = ((UINT32 *)nonce)[0];
255 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)tmp_nonce_lo)[0];
256 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
257 }
258
259#if (UMAC_OUTPUT_LEN == 4)
260 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
261#elif (UMAC_OUTPUT_LEN == 8)
262 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
263#elif (UMAC_OUTPUT_LEN == 12)
264 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
265 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
266#elif (UMAC_OUTPUT_LEN == 16)
267 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
268 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
269#endif
270}
271
272/* ---------------------------------------------------------------------- */
273/* ---------------------------------------------------------------------- */
274/* ----- Begin NH Hash Section ------------------------------------------ */
275/* ---------------------------------------------------------------------- */
276/* ---------------------------------------------------------------------- */
277
278/* The NH-based hash functions used in UMAC are described in the UMAC paper
279 * and specification, both of which can be found at the UMAC website.
280 * The interface to this implementation has two
281 * versions, one expects the entire message being hashed to be passed
282 * in a single buffer and returns the hash result immediately. The second
283 * allows the message to be passed in a sequence of buffers. In the
284 * muliple-buffer interface, the client calls the routine nh_update() as
285 * many times as necessary. When there is no more data to be fed to the
286 * hash, the client calls nh_final() which calculates the hash output.
287 * Before beginning another hash calculation the nh_reset() routine
288 * must be called. The single-buffer routine, nh(), is equivalent to
289 * the sequence of calls nh_update() and nh_final(); however it is
290 * optimized and should be prefered whenever the multiple-buffer interface
291 * is not necessary. When using either interface, it is the client's
292 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
293 *
294 * The routine nh_init() initializes the nh_ctx data structure and
295 * must be called once, before any other PDF routine.
296 */
297
298 /* The "nh_aux" routines do the actual NH hashing work. They
299 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
300 * produce output for all STREAMS NH iterations in one call,
301 * allowing the parallel implementation of the streams.
302 */
303
304#define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
305#define L1_KEY_LEN 1024 /* Internal key bytes */
306#define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
307#define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
308#define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
309#define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
310
311typedef struct {
312 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
313 UINT8 data [HASH_BUF_BYTES]; /* Incomming data buffer */
314 int next_data_empty; /* Bookeeping variable for data buffer. */
315 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */
316 UINT64 state[STREAMS]; /* on-line state */
317} nh_ctx;
318
319
320#if (UMAC_OUTPUT_LEN == 4)
321
322static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
323/* NH hashing primitive. Previous (partial) hash result is loaded and
324* then stored via hp pointer. The length of the data pointed at by "dp",
325* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
326* is expected to be endian compensated in memory at key setup.
327*/
328{
329 UINT64 h;
330 UWORD c = dlen / 32;
331 UINT32 *k = (UINT32 *)kp;
332 UINT32 *d = (UINT32 *)dp;
333 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
334 UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
335
336 h = *((UINT64 *)hp);
337 do {
338 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
339 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
340 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
341 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
342 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
343 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
344 h += MUL64((k0 + d0), (k4 + d4));
345 h += MUL64((k1 + d1), (k5 + d5));
346 h += MUL64((k2 + d2), (k6 + d6));
347 h += MUL64((k3 + d3), (k7 + d7));
348
349 d += 8;
350 k += 8;
351 } while (--c);
352 *((UINT64 *)hp) = h;
353}
354
355#elif (UMAC_OUTPUT_LEN == 8)
356
357static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
358/* Same as previous nh_aux, but two streams are handled in one pass,
359 * reading and writing 16 bytes of hash-state per call.
360 */
361{
362 UINT64 h1,h2;
363 UWORD c = dlen / 32;
364 UINT32 *k = (UINT32 *)kp;
365 UINT32 *d = (UINT32 *)dp;
366 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
367 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
368 k8,k9,k10,k11;
369
370 h1 = *((UINT64 *)hp);
371 h2 = *((UINT64 *)hp + 1);
372 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
373 do {
374 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
375 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
376 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
377 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
378 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
379 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
380
381 h1 += MUL64((k0 + d0), (k4 + d4));
382 h2 += MUL64((k4 + d0), (k8 + d4));
383
384 h1 += MUL64((k1 + d1), (k5 + d5));
385 h2 += MUL64((k5 + d1), (k9 + d5));
386
387 h1 += MUL64((k2 + d2), (k6 + d6));
388 h2 += MUL64((k6 + d2), (k10 + d6));
389
390 h1 += MUL64((k3 + d3), (k7 + d7));
391 h2 += MUL64((k7 + d3), (k11 + d7));
392
393 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
394
395 d += 8;
396 k += 8;
397 } while (--c);
398 ((UINT64 *)hp)[0] = h1;
399 ((UINT64 *)hp)[1] = h2;
400}
401
402#elif (UMAC_OUTPUT_LEN == 12)
403
404static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
405/* Same as previous nh_aux, but two streams are handled in one pass,
406 * reading and writing 24 bytes of hash-state per call.
407*/
408{
409 UINT64 h1,h2,h3;
410 UWORD c = dlen / 32;
411 UINT32 *k = (UINT32 *)kp;
412 UINT32 *d = (UINT32 *)dp;
413 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
414 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
415 k8,k9,k10,k11,k12,k13,k14,k15;
416
417 h1 = *((UINT64 *)hp);
418 h2 = *((UINT64 *)hp + 1);
419 h3 = *((UINT64 *)hp + 2);
420 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
421 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
422 do {
423 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
424 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
425 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
426 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
427 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
428 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
429
430 h1 += MUL64((k0 + d0), (k4 + d4));
431 h2 += MUL64((k4 + d0), (k8 + d4));
432 h3 += MUL64((k8 + d0), (k12 + d4));
433
434 h1 += MUL64((k1 + d1), (k5 + d5));
435 h2 += MUL64((k5 + d1), (k9 + d5));
436 h3 += MUL64((k9 + d1), (k13 + d5));
437
438 h1 += MUL64((k2 + d2), (k6 + d6));
439 h2 += MUL64((k6 + d2), (k10 + d6));
440 h3 += MUL64((k10 + d2), (k14 + d6));
441
442 h1 += MUL64((k3 + d3), (k7 + d7));
443 h2 += MUL64((k7 + d3), (k11 + d7));
444 h3 += MUL64((k11 + d3), (k15 + d7));
445
446 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
447 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
448
449 d += 8;
450 k += 8;
451 } while (--c);
452 ((UINT64 *)hp)[0] = h1;
453 ((UINT64 *)hp)[1] = h2;
454 ((UINT64 *)hp)[2] = h3;
455}
456
457#elif (UMAC_OUTPUT_LEN == 16)
458
459static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
460/* Same as previous nh_aux, but two streams are handled in one pass,
461 * reading and writing 24 bytes of hash-state per call.
462*/
463{
464 UINT64 h1,h2,h3,h4;
465 UWORD c = dlen / 32;
466 UINT32 *k = (UINT32 *)kp;
467 UINT32 *d = (UINT32 *)dp;
468 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
469 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
470 k8,k9,k10,k11,k12,k13,k14,k15,
471 k16,k17,k18,k19;
472
473 h1 = *((UINT64 *)hp);
474 h2 = *((UINT64 *)hp + 1);
475 h3 = *((UINT64 *)hp + 2);
476 h4 = *((UINT64 *)hp + 3);
477 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
478 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
479 do {
480 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
481 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
482 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
483 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
484 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
485 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
486 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
487
488 h1 += MUL64((k0 + d0), (k4 + d4));
489 h2 += MUL64((k4 + d0), (k8 + d4));
490 h3 += MUL64((k8 + d0), (k12 + d4));
491 h4 += MUL64((k12 + d0), (k16 + d4));
492
493 h1 += MUL64((k1 + d1), (k5 + d5));
494 h2 += MUL64((k5 + d1), (k9 + d5));
495 h3 += MUL64((k9 + d1), (k13 + d5));
496 h4 += MUL64((k13 + d1), (k17 + d5));
497
498 h1 += MUL64((k2 + d2), (k6 + d6));
499 h2 += MUL64((k6 + d2), (k10 + d6));
500 h3 += MUL64((k10 + d2), (k14 + d6));
501 h4 += MUL64((k14 + d2), (k18 + d6));
502
503 h1 += MUL64((k3 + d3), (k7 + d7));
504 h2 += MUL64((k7 + d3), (k11 + d7));
505 h3 += MUL64((k11 + d3), (k15 + d7));
506 h4 += MUL64((k15 + d3), (k19 + d7));
507
508 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
509 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
510 k8 = k16; k9 = k17; k10 = k18; k11 = k19;
511
512 d += 8;
513 k += 8;
514 } while (--c);
515 ((UINT64 *)hp)[0] = h1;
516 ((UINT64 *)hp)[1] = h2;
517 ((UINT64 *)hp)[2] = h3;
518 ((UINT64 *)hp)[3] = h4;
519}
520
521/* ---------------------------------------------------------------------- */
522#endif /* UMAC_OUTPUT_LENGTH */
523/* ---------------------------------------------------------------------- */
524
525
526/* ---------------------------------------------------------------------- */
527
528static void nh_transform(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
529/* This function is a wrapper for the primitive NH hash functions. It takes
530 * as argument "hc" the current hash context and a buffer which must be a
531 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
532 * appropriately according to how much message has been hashed already.
533 */
534{
535 UINT8 *key;
536
537 key = hc->nh_key + hc->bytes_hashed;
538 nh_aux(key, buf, hc->state, nbytes);
539}
540
541/* ---------------------------------------------------------------------- */
542
543static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
544/* We endian convert the keys on little-endian computers to */
545/* compensate for the lack of big-endian memory reads during hashing. */
546{
547 UWORD iters = num_bytes / bpw;
548 if (bpw == 4) {
549 UINT32 *p = (UINT32 *)buf;
550 do {
551 *p = LOAD_UINT32_REVERSED(p);
552 p++;
553 } while (--iters);
554 } else if (bpw == 8) {
555 UINT32 *p = (UINT32 *)buf;
556 UINT32 t;
557 do {
558 t = LOAD_UINT32_REVERSED(p+1);
559 p[1] = LOAD_UINT32_REVERSED(p);
560 p[0] = t;
561 p += 2;
562 } while (--iters);
563 }
564}
565#if (__LITTLE_ENDIAN__)
566#define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
567#else
568#define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
569#endif
570
571/* ---------------------------------------------------------------------- */
572
573static void nh_reset(nh_ctx *hc)
574/* Reset nh_ctx to ready for hashing of new data */
575{
576 hc->bytes_hashed = 0;
577 hc->next_data_empty = 0;
578 hc->state[0] = 0;
579#if (UMAC_OUTPUT_LEN >= 8)
580 hc->state[1] = 0;
581#endif
582#if (UMAC_OUTPUT_LEN >= 12)
583 hc->state[2] = 0;
584#endif
585#if (UMAC_OUTPUT_LEN == 16)
586 hc->state[3] = 0;
587#endif
588
589}
590
591/* ---------------------------------------------------------------------- */
592
593static void nh_init(nh_ctx *hc, aes_int_key prf_key)
594/* Generate nh_key, endian convert and reset to be ready for hashing. */
595{
596 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
597 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
598 nh_reset(hc);
599}
600
601/* ---------------------------------------------------------------------- */
602
603static void nh_update(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
604/* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
605/* even multiple of HASH_BUF_BYTES. */
606{
607 UINT32 i,j;
608
609 j = hc->next_data_empty;
610 if ((j + nbytes) >= HASH_BUF_BYTES) {
611 if (j) {
612 i = HASH_BUF_BYTES - j;
613 memcpy(hc->data+j, buf, i);
614 nh_transform(hc,hc->data,HASH_BUF_BYTES);
615 nbytes -= i;
616 buf += i;
617 hc->bytes_hashed += HASH_BUF_BYTES;
618 }
619 if (nbytes >= HASH_BUF_BYTES) {
620 i = nbytes & ~(HASH_BUF_BYTES - 1);
621 nh_transform(hc, buf, i);
622 nbytes -= i;
623 buf += i;
624 hc->bytes_hashed += i;
625 }
626 j = 0;
627 }
628 memcpy(hc->data + j, buf, nbytes);
629 hc->next_data_empty = j + nbytes;
630}
631
632/* ---------------------------------------------------------------------- */
633
634static void zero_pad(UINT8 *p, int nbytes)
635{
636/* Write "nbytes" of zeroes, beginning at "p" */
637 if (nbytes >= (int)sizeof(UWORD)) {
638 while ((ptrdiff_t)p % sizeof(UWORD)) {
639 *p = 0;
640 nbytes--;
641 p++;
642 }
643 while (nbytes >= (int)sizeof(UWORD)) {
644 *(UWORD *)p = 0;
645 nbytes -= sizeof(UWORD);
646 p += sizeof(UWORD);
647 }
648 }
649 while (nbytes) {
650 *p = 0;
651 nbytes--;
652 p++;
653 }
654}
655
656/* ---------------------------------------------------------------------- */
657
658static void nh_final(nh_ctx *hc, UINT8 *result)
659/* After passing some number of data buffers to nh_update() for integration
660 * into an NH context, nh_final is called to produce a hash result. If any
661 * bytes are in the buffer hc->data, incorporate them into the
662 * NH context. Finally, add into the NH accumulation "state" the total number
663 * of bits hashed. The resulting numbers are written to the buffer "result".
664 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
665 */
666{
667 int nh_len, nbits;
668
669 if (hc->next_data_empty != 0) {
670 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
671 ~(L1_PAD_BOUNDARY - 1));
672 zero_pad(hc->data + hc->next_data_empty,
673 nh_len - hc->next_data_empty);
674 nh_transform(hc, hc->data, nh_len);
675 hc->bytes_hashed += hc->next_data_empty;
676 } else if (hc->bytes_hashed == 0) {
677 nh_len = L1_PAD_BOUNDARY;
678 zero_pad(hc->data, L1_PAD_BOUNDARY);
679 nh_transform(hc, hc->data, nh_len);
680 }
681
682 nbits = (hc->bytes_hashed << 3);
683 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
684#if (UMAC_OUTPUT_LEN >= 8)
685 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
686#endif
687#if (UMAC_OUTPUT_LEN >= 12)
688 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
689#endif
690#if (UMAC_OUTPUT_LEN == 16)
691 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
692#endif
693 nh_reset(hc);
694}
695
696/* ---------------------------------------------------------------------- */
697
698static void nh(nh_ctx *hc, UINT8 *buf, UINT32 padded_len,
699 UINT32 unpadded_len, UINT8 *result)
700/* All-in-one nh_update() and nh_final() equivalent.
701 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
702 * well aligned
703 */
704{
705 UINT32 nbits;
706
707 /* Initialize the hash state */
708 nbits = (unpadded_len << 3);
709
710 ((UINT64 *)result)[0] = nbits;
711#if (UMAC_OUTPUT_LEN >= 8)
712 ((UINT64 *)result)[1] = nbits;
713#endif
714#if (UMAC_OUTPUT_LEN >= 12)
715 ((UINT64 *)result)[2] = nbits;
716#endif
717#if (UMAC_OUTPUT_LEN == 16)
718 ((UINT64 *)result)[3] = nbits;
719#endif
720
721 nh_aux(hc->nh_key, buf, result, padded_len);
722}
723
724/* ---------------------------------------------------------------------- */
725/* ---------------------------------------------------------------------- */
726/* ----- Begin UHASH Section -------------------------------------------- */
727/* ---------------------------------------------------------------------- */
728/* ---------------------------------------------------------------------- */
729
730/* UHASH is a multi-layered algorithm. Data presented to UHASH is first
731 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
732 * unless the initial data to be hashed is short. After the polynomial-
733 * layer, an inner-product hash is used to produce the final UHASH output.
734 *
735 * UHASH provides two interfaces, one all-at-once and another where data
736 * buffers are presented sequentially. In the sequential interface, the
737 * UHASH client calls the routine uhash_update() as many times as necessary.
738 * When there is no more data to be fed to UHASH, the client calls
739 * uhash_final() which
740 * calculates the UHASH output. Before beginning another UHASH calculation
741 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
742 * uhash(), is equivalent to the sequence of calls uhash_update() and
743 * uhash_final(); however it is optimized and should be
744 * used whenever the sequential interface is not necessary.
745 *
746 * The routine uhash_init() initializes the uhash_ctx data structure and
747 * must be called once, before any other UHASH routine.
748 */
749
750/* ---------------------------------------------------------------------- */
751/* ----- Constants and uhash_ctx ---------------------------------------- */
752/* ---------------------------------------------------------------------- */
753
754/* ---------------------------------------------------------------------- */
755/* ----- Poly hash and Inner-Product hash Constants --------------------- */
756/* ---------------------------------------------------------------------- */
757
758/* Primes and masks */
759#define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
760#define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
761#define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
762
763
764/* ---------------------------------------------------------------------- */
765
766typedef struct uhash_ctx {
767 nh_ctx hash; /* Hash context for L1 NH hash */
768 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */
769 UINT64 poly_accum[STREAMS]; /* poly hash result */
770 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */
771 UINT32 ip_trans[STREAMS]; /* Inner-product translation */
772 UINT32 msg_len; /* Total length of data passed */
773 /* to uhash */
774} uhash_ctx;
775typedef struct uhash_ctx *uhash_ctx_t;
776
777/* ---------------------------------------------------------------------- */
778
779
780/* The polynomial hashes use Horner's rule to evaluate a polynomial one
781 * word at a time. As described in the specification, poly32 and poly64
782 * require keys from special domains. The following implementations exploit
783 * the special domains to avoid overflow. The results are not guaranteed to
784 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
785 * patches any errant values.
786 */
787
788static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
789{
790 UINT32 key_hi = (UINT32)(key >> 32),
791 key_lo = (UINT32)key,
792 cur_hi = (UINT32)(cur >> 32),
793 cur_lo = (UINT32)cur,
794 x_lo,
795 x_hi;
796 UINT64 X,T,res;
797
798 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
799 x_lo = (UINT32)X;
800 x_hi = (UINT32)(X >> 32);
801
802 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
803
804 T = ((UINT64)x_lo << 32);
805 res += T;
806 if (res < T)
807 res += 59;
808
809 res += data;
810 if (res < data)
811 res += 59;
812
813 return res;
814}
815
816
817/* Although UMAC is specified to use a ramped polynomial hash scheme, this
818 * implementation does not handle all ramp levels. Because we don't handle
819 * the ramp up to p128 modulus in this implementation, we are limited to
820 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
821 * bytes input to UMAC per tag, ie. 16MB).
822 */
823static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
824{
825 int i;
826 UINT64 *data=(UINT64*)data_in;
827
828 for (i = 0; i < STREAMS; i++) {
829 if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
830 hc->poly_accum[i] = poly64(hc->poly_accum[i],
831 hc->poly_key_8[i], p64 - 1);
832 hc->poly_accum[i] = poly64(hc->poly_accum[i],
833 hc->poly_key_8[i], (data[i] - 59));
834 } else {
835 hc->poly_accum[i] = poly64(hc->poly_accum[i],
836 hc->poly_key_8[i], data[i]);
837 }
838 }
839}
840
841
842/* ---------------------------------------------------------------------- */
843
844
845/* The final step in UHASH is an inner-product hash. The poly hash
846 * produces a result not neccesarily WORD_LEN bytes long. The inner-
847 * product hash breaks the polyhash output into 16-bit chunks and
848 * multiplies each with a 36 bit key.
849 */
850
851static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
852{
853 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
854 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
855 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
856 t = t + ipkp[3] * (UINT64)(UINT16)(data);
857
858 return t;
859}
860
861static UINT32 ip_reduce_p36(UINT64 t)
862{
863/* Divisionless modular reduction */
864 UINT64 ret;
865
866 ret = (t & m36) + 5 * (t >> 36);
867 if (ret >= p36)
868 ret -= p36;
869
870 /* return least significant 32 bits */
871 return (UINT32)(ret);
872}
873
874
875/* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
876 * the polyhash stage is skipped and ip_short is applied directly to the
877 * NH output.
878 */
879static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
880{
881 UINT64 t;
882 UINT64 *nhp = (UINT64 *)nh_res;
883
884 t = ip_aux(0,ahc->ip_keys, nhp[0]);
885 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
886#if (UMAC_OUTPUT_LEN >= 8)
887 t = ip_aux(0,ahc->ip_keys+4, nhp[1]);
888 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
889#endif
890#if (UMAC_OUTPUT_LEN >= 12)
891 t = ip_aux(0,ahc->ip_keys+8, nhp[2]);
892 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
893#endif
894#if (UMAC_OUTPUT_LEN == 16)
895 t = ip_aux(0,ahc->ip_keys+12, nhp[3]);
896 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
897#endif
898}
899
900/* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
901 * the polyhash stage is not skipped and ip_long is applied to the
902 * polyhash output.
903 */
904static void ip_long(uhash_ctx_t ahc, u_char *res)
905{
906 int i;
907 UINT64 t;
908
909 for (i = 0; i < STREAMS; i++) {
910 /* fix polyhash output not in Z_p64 */
911 if (ahc->poly_accum[i] >= p64)
912 ahc->poly_accum[i] -= p64;
913 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
914 STORE_UINT32_BIG((UINT32 *)res+i,
915 ip_reduce_p36(t) ^ ahc->ip_trans[i]);
916 }
917}
918
919
920/* ---------------------------------------------------------------------- */
921
922/* ---------------------------------------------------------------------- */
923
924/* Reset uhash context for next hash session */
925static int uhash_reset(uhash_ctx_t pc)
926{
927 nh_reset(&pc->hash);
928 pc->msg_len = 0;
929 pc->poly_accum[0] = 1;
930#if (UMAC_OUTPUT_LEN >= 8)
931 pc->poly_accum[1] = 1;
932#endif
933#if (UMAC_OUTPUT_LEN >= 12)
934 pc->poly_accum[2] = 1;
935#endif
936#if (UMAC_OUTPUT_LEN == 16)
937 pc->poly_accum[3] = 1;
938#endif
939 return 1;
940}
941
942/* ---------------------------------------------------------------------- */
943
944/* Given a pointer to the internal key needed by kdf() and a uhash context,
945 * initialize the NH context and generate keys needed for poly and inner-
946 * product hashing. All keys are endian adjusted in memory so that native
947 * loads cause correct keys to be in registers during calculation.
948 */
949static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
950{
951 int i;
952 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
953
954 /* Zero the entire uhash context */
955 memset(ahc, 0, sizeof(uhash_ctx));
956
957 /* Initialize the L1 hash */
958 nh_init(&ahc->hash, prf_key);
959
960 /* Setup L2 hash variables */
961 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
962 for (i = 0; i < STREAMS; i++) {
963 /* Fill keys from the buffer, skipping bytes in the buffer not
964 * used by this implementation. Endian reverse the keys if on a
965 * little-endian computer.
966 */
967 memcpy(ahc->poly_key_8+i, buf+24*i, 8);
968 endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
969 /* Mask the 64-bit keys to their special domain */
970 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
971 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
972 }
973
974 /* Setup L3-1 hash variables */
975 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
976 for (i = 0; i < STREAMS; i++)
977 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
978 4*sizeof(UINT64));
979 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
980 sizeof(ahc->ip_keys));
981 for (i = 0; i < STREAMS*4; i++)
982 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */
983
984 /* Setup L3-2 hash variables */
985 /* Fill buffer with index 4 key */
986 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
987 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
988 STREAMS * sizeof(UINT32));
989}
990
991/* ---------------------------------------------------------------------- */
992
993#if 0
994static uhash_ctx_t uhash_alloc(u_char key[])
995{
996/* Allocate memory and force to a 16-byte boundary. */
997 uhash_ctx_t ctx;
998 u_char bytes_to_add;
999 aes_int_key prf_key;
1000
1001 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1002 if (ctx) {
1003 if (ALLOC_BOUNDARY) {
1004 bytes_to_add = ALLOC_BOUNDARY -
1005 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1006 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1007 *((u_char *)ctx - 1) = bytes_to_add;
1008 }
1009 aes_key_setup(key,prf_key);
1010 uhash_init(ctx, prf_key);
1011 }
1012 return (ctx);
1013}
1014#endif
1015
1016/* ---------------------------------------------------------------------- */
1017
1018#if 0
1019static int uhash_free(uhash_ctx_t ctx)
1020{
1021/* Free memory allocated by uhash_alloc */
1022 u_char bytes_to_sub;
1023
1024 if (ctx) {
1025 if (ALLOC_BOUNDARY) {
1026 bytes_to_sub = *((u_char *)ctx - 1);
1027 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1028 }
1029 free(ctx);
1030 }
1031 return (1);
1032}
1033#endif
1034/* ---------------------------------------------------------------------- */
1035
1036static int uhash_update(uhash_ctx_t ctx, u_char *input, long len)
1037/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1038 * hash each one with NH, calling the polyhash on each NH output.
1039 */
1040{
1041 UWORD bytes_hashed, bytes_remaining;
1042 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1043
1044 if (ctx->msg_len + len <= L1_KEY_LEN) {
1045 nh_update(&ctx->hash, (UINT8 *)input, len);
1046 ctx->msg_len += len;
1047 } else {
1048
1049 bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1050 if (ctx->msg_len == L1_KEY_LEN)
1051 bytes_hashed = L1_KEY_LEN;
1052
1053 if (bytes_hashed + len >= L1_KEY_LEN) {
1054
1055 /* If some bytes have been passed to the hash function */
1056 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1057 /* bytes to complete the current nh_block. */
1058 if (bytes_hashed) {
1059 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1060 nh_update(&ctx->hash, (UINT8 *)input, bytes_remaining);
1061 nh_final(&ctx->hash, nh_result);
1062 ctx->msg_len += bytes_remaining;
1063 poly_hash(ctx,(UINT32 *)nh_result);
1064 len -= bytes_remaining;
1065 input += bytes_remaining;
1066 }
1067
1068 /* Hash directly from input stream if enough bytes */
1069 while (len >= L1_KEY_LEN) {
1070 nh(&ctx->hash, (UINT8 *)input, L1_KEY_LEN,
1071 L1_KEY_LEN, nh_result);
1072 ctx->msg_len += L1_KEY_LEN;
1073 len -= L1_KEY_LEN;
1074 input += L1_KEY_LEN;
1075 poly_hash(ctx,(UINT32 *)nh_result);
1076 }
1077 }
1078
1079 /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1080 if (len) {
1081 nh_update(&ctx->hash, (UINT8 *)input, len);
1082 ctx->msg_len += len;
1083 }
1084 }
1085
1086 return (1);
1087}
1088
1089/* ---------------------------------------------------------------------- */
1090
1091static int uhash_final(uhash_ctx_t ctx, u_char *res)
1092/* Incorporate any pending data, pad, and generate tag */
1093{
1094 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1095
1096 if (ctx->msg_len > L1_KEY_LEN) {
1097 if (ctx->msg_len % L1_KEY_LEN) {
1098 nh_final(&ctx->hash, nh_result);
1099 poly_hash(ctx,(UINT32 *)nh_result);
1100 }
1101 ip_long(ctx, res);
1102 } else {
1103 nh_final(&ctx->hash, nh_result);
1104 ip_short(ctx,nh_result, res);
1105 }
1106 uhash_reset(ctx);
1107 return (1);
1108}
1109
1110/* ---------------------------------------------------------------------- */
1111
1112#if 0
1113static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1114/* assumes that msg is in a writable buffer of length divisible by */
1115/* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
1116{
1117 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1118 UINT32 nh_len;
1119 int extra_zeroes_needed;
1120
1121 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1122 * the polyhash.
1123 */
1124 if (len <= L1_KEY_LEN) {
1125 if (len == 0) /* If zero length messages will not */
1126 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */
1127 else
1128 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1129 extra_zeroes_needed = nh_len - len;
1130 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1131 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1132 ip_short(ahc,nh_result, res);
1133 } else {
1134 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1135 * output to poly_hash().
1136 */
1137 do {
1138 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1139 poly_hash(ahc,(UINT32 *)nh_result);
1140 len -= L1_KEY_LEN;
1141 msg += L1_KEY_LEN;
1142 } while (len >= L1_KEY_LEN);
1143 if (len) {
1144 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1145 extra_zeroes_needed = nh_len - len;
1146 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1147 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1148 poly_hash(ahc,(UINT32 *)nh_result);
1149 }
1150
1151 ip_long(ahc, res);
1152 }
1153
1154 uhash_reset(ahc);
1155 return 1;
1156}
1157#endif
1158
1159/* ---------------------------------------------------------------------- */
1160/* ---------------------------------------------------------------------- */
1161/* ----- Begin UMAC Section --------------------------------------------- */
1162/* ---------------------------------------------------------------------- */
1163/* ---------------------------------------------------------------------- */
1164
1165/* The UMAC interface has two interfaces, an all-at-once interface where
1166 * the entire message to be authenticated is passed to UMAC in one buffer,
1167 * and a sequential interface where the message is presented a little at a
1168 * time. The all-at-once is more optimaized than the sequential version and
1169 * should be preferred when the sequential interface is not required.
1170 */
1171struct umac_ctx {
1172 uhash_ctx hash; /* Hash function for message compression */
1173 pdf_ctx pdf; /* PDF for hashed output */
1174 void *free_ptr; /* Address to free this struct via */
1175} umac_ctx;
1176
1177/* ---------------------------------------------------------------------- */
1178
1179#if 0
1180int umac_reset(struct umac_ctx *ctx)
1181/* Reset the hash function to begin a new authentication. */
1182{
1183 uhash_reset(&ctx->hash);
1184 return (1);
1185}
1186#endif
1187
1188/* ---------------------------------------------------------------------- */
1189
1190int umac_delete(struct umac_ctx *ctx)
1191/* Deallocate the ctx structure */
1192{
1193 if (ctx) {
1194 if (ALLOC_BOUNDARY)
1195 ctx = (struct umac_ctx *)ctx->free_ptr;
1196 free(ctx);
1197 }
1198 return (1);
1199}
1200
1201/* ---------------------------------------------------------------------- */
1202
1203struct umac_ctx *umac_new(u_char key[])
1204/* Dynamically allocate a umac_ctx struct, initialize variables,
1205 * generate subkeys from key. Align to 16-byte boundary.
1206 */
1207{
1208 struct umac_ctx *ctx, *octx;
1209 size_t bytes_to_add;
1210 aes_int_key prf_key;
1211
1212 octx = ctx = malloc(sizeof(*ctx) + ALLOC_BOUNDARY);
1213 if (ctx) {
1214 if (ALLOC_BOUNDARY) {
1215 bytes_to_add = ALLOC_BOUNDARY -
1216 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1217 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1218 }
1219 ctx->free_ptr = octx;
1220 aes_key_setup(key,prf_key);
1221 pdf_init(&ctx->pdf, prf_key);
1222 uhash_init(&ctx->hash, prf_key);
1223 }
1224
1225 return (ctx);
1226}
1227
1228/* ---------------------------------------------------------------------- */
1229
1230int umac_final(struct umac_ctx *ctx, u_char tag[], u_char nonce[8])
1231/* Incorporate any pending data, pad, and generate tag */
1232{
1233 uhash_final(&ctx->hash, (u_char *)tag);
1234 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1235
1236 return (1);
1237}
1238
1239/* ---------------------------------------------------------------------- */
1240
1241int umac_update(struct umac_ctx *ctx, u_char *input, long len)
1242/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
1243/* hash each one, calling the PDF on the hashed output whenever the hash- */
1244/* output buffer is full. */
1245{
1246 uhash_update(&ctx->hash, input, len);
1247 return (1);
1248}
1249
1250/* ---------------------------------------------------------------------- */
1251
1252#if 0
1253int umac(struct umac_ctx *ctx, u_char *input,
1254 long len, u_char tag[],
1255 u_char nonce[8])
1256/* All-in-one version simply calls umac_update() and umac_final(). */
1257{
1258 uhash(&ctx->hash, input, len, (u_char *)tag);
1259 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1260
1261 return (1);
1262}
1263#endif
1264
1265/* ---------------------------------------------------------------------- */
1266/* ---------------------------------------------------------------------- */
1267/* ----- End UMAC Section ----------------------------------------------- */
1268/* ---------------------------------------------------------------------- */
1269/* ---------------------------------------------------------------------- */
This page took 0.652411 seconds and 5 git commands to generate.