]> andersk Git - openssh.git/blame - umac.c
- jmc@cvs.openbsd.org 2007/06/08 07:48:09
[openssh.git] / umac.c
CommitLineData
f444d0f8 1/* $OpenBSD: umac.c,v 1.1 2007/06/07 19:37:34 pvalchev Exp $ */
2/* -----------------------------------------------------------------------
3 *
4 * umac.c -- C Implementation UMAC Message Authentication
5 *
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
7 *
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
11 *
12 * Copyright (c) 1999-2006 Ted Krovetz
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
20 *
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
22 *
23 * ---------------------------------------------------------------------- */
24
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
26 *
27 * 1) This version does not work properly on messages larger than 16MB
28 *
29 * 2) If you set the switch to use SSE2, then all data must be 16-byte
30 * aligned
31 *
32 * 3) When calling the function umac(), it is assumed that msg is in
33 * a writable buffer of length divisible by 32 bytes. The message itself
34 * does not have to fill the entire buffer, but bytes beyond msg may be
35 * zeroed.
36 *
37 * 4) Three free AES implementations are supported by this implementation of
38 * UMAC. Paulo Barreto's version is in the public domain and can be found
39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44 * the third.
45 *
46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47 * produced under gcc with optimizations set -O3 or higher. Dunno why.
48 *
49 /////////////////////////////////////////////////////////////////////// */
50
51/* ---------------------------------------------------------------------- */
52/* --- User Switches ---------------------------------------------------- */
53/* ---------------------------------------------------------------------- */
54
55#define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
56/* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
57/* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
58/* #define SSE2 0 Is SSE2 is available? */
59/* #define RUN_TESTS 0 Run basic correctness/speed tests */
60/* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */
61
62/* ---------------------------------------------------------------------- */
63/* -- Global Includes --------------------------------------------------- */
64/* ---------------------------------------------------------------------- */
65
66#include "includes.h"
67#include <sys/types.h>
68
69#include "umac.h"
70#include <string.h>
71#include <stdlib.h>
72#include <stddef.h>
73
74/* ---------------------------------------------------------------------- */
75/* --- Primitive Data Types --- */
76/* ---------------------------------------------------------------------- */
77
78/* The following assumptions may need change on your system */
79typedef u_int8_t UINT8; /* 1 byte */
80typedef u_int16_t UINT16; /* 2 byte */
81typedef u_int32_t UINT32; /* 4 byte */
82typedef u_int64_t UINT64; /* 8 bytes */
83typedef unsigned int UWORD; /* Register */
84
85/* ---------------------------------------------------------------------- */
86/* --- Constants -------------------------------------------------------- */
87/* ---------------------------------------------------------------------- */
88
89#define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
90
91/* Message "words" are read from memory in an endian-specific manner. */
92/* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
93/* be set true if the host computer is little-endian. */
94
95#if BYTE_ORDER == LITTLE_ENDIAN
96#define __LITTLE_ENDIAN__ 1
97#else
98#define __LITTLE_ENDIAN__ 0
99#endif
100
101/* ---------------------------------------------------------------------- */
102/* ---------------------------------------------------------------------- */
103/* ----- Architecture Specific ------------------------------------------ */
104/* ---------------------------------------------------------------------- */
105/* ---------------------------------------------------------------------- */
106
107
108/* ---------------------------------------------------------------------- */
109/* ---------------------------------------------------------------------- */
110/* ----- Primitive Routines --------------------------------------------- */
111/* ---------------------------------------------------------------------- */
112/* ---------------------------------------------------------------------- */
113
114
115/* ---------------------------------------------------------------------- */
116/* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
117/* ---------------------------------------------------------------------- */
118
119#define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
120
121/* ---------------------------------------------------------------------- */
122/* --- Endian Conversion --- Forcing assembly on some platforms */
123/* ---------------------------------------------------------------------- */
124
125#if 0
126static UINT32 LOAD_UINT32_REVERSED(void *ptr)
127{
128 UINT32 temp = *(UINT32 *)ptr;
129 temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 )
130 | ((temp & 0x0000FF00) << 8 ) | (temp << 24);
131 return (UINT32)temp;
132}
133
134static void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
135{
136 UINT32 i = (UINT32)x;
137 *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 )
138 | ((i & 0x0000FF00) << 8 ) | (i << 24);
139}
140#endif
141
142/* The following definitions use the above reversal-primitives to do the right
143 * thing on endian specific load and stores.
144 */
145
146#define LOAD_UINT32_REVERSED(p) (swap32(*(UINT32 *)(p)))
147#define STORE_UINT32_REVERSED(p,v) (*(UINT32 *)(p) = swap32(v))
148
149#if (__LITTLE_ENDIAN__)
150#define LOAD_UINT32_LITTLE(ptr) (*(UINT32 *)(ptr))
151#define STORE_UINT32_BIG(ptr,x) STORE_UINT32_REVERSED(ptr,x)
152#else
153#define LOAD_UINT32_LITTLE(ptr) LOAD_UINT32_REVERSED(ptr)
154#define STORE_UINT32_BIG(ptr,x) (*(UINT32 *)(ptr) = (UINT32)(x))
155#endif
156
157
158
159/* ---------------------------------------------------------------------- */
160/* ---------------------------------------------------------------------- */
161/* ----- Begin KDF & PDF Section ---------------------------------------- */
162/* ---------------------------------------------------------------------- */
163/* ---------------------------------------------------------------------- */
164
165/* UMAC uses AES with 16 byte block and key lengths */
166#define AES_BLOCK_LEN 16
167
168/* OpenSSL's AES */
169#include <openssl/aes.h>
170typedef AES_KEY aes_int_key[1];
171#define aes_encryption(in,out,int_key) \
172 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
173#define aes_key_setup(key,int_key) \
174 AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key)
175
176/* The user-supplied UMAC key is stretched using AES in a counter
177 * mode to supply all random bits needed by UMAC. The kdf function takes
178 * an AES internal key representation 'key' and writes a stream of
179 * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
180 * 'ndx' causes a distinct byte stream.
181 */
182static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
183{
184 UINT8 in_buf[AES_BLOCK_LEN] = {0};
185 UINT8 out_buf[AES_BLOCK_LEN];
186 UINT8 *dst_buf = (UINT8 *)buffer_ptr;
187 int i;
188
189 /* Setup the initial value */
190 in_buf[AES_BLOCK_LEN-9] = ndx;
191 in_buf[AES_BLOCK_LEN-1] = i = 1;
192
193 while (nbytes >= AES_BLOCK_LEN) {
194 aes_encryption(in_buf, out_buf, key);
195 memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
196 in_buf[AES_BLOCK_LEN-1] = ++i;
197 nbytes -= AES_BLOCK_LEN;
198 dst_buf += AES_BLOCK_LEN;
199 }
200 if (nbytes) {
201 aes_encryption(in_buf, out_buf, key);
202 memcpy(dst_buf,out_buf,nbytes);
203 }
204}
205
206/* The final UHASH result is XOR'd with the output of a pseudorandom
207 * function. Here, we use AES to generate random output and
208 * xor the appropriate bytes depending on the last bits of nonce.
209 * This scheme is optimized for sequential, increasing big-endian nonces.
210 */
211
212typedef struct {
213 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */
214 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */
215 aes_int_key prf_key; /* Expanded AES key for PDF */
216} pdf_ctx;
217
218static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
219{
220 UINT8 buf[UMAC_KEY_LEN];
221
222 kdf(buf, prf_key, 0, UMAC_KEY_LEN);
223 aes_key_setup(buf, pc->prf_key);
224
225 /* Initialize pdf and cache */
226 memset(pc->nonce, 0, sizeof(pc->nonce));
227 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
228}
229
230static void pdf_gen_xor(pdf_ctx *pc, UINT8 nonce[8], UINT8 buf[8])
231{
232 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
233 * of the AES output. If last time around we returned the ndx-1st
234 * element, then we may have the result in the cache already.
235 */
236
237#if (UMAC_OUTPUT_LEN == 4)
238#define LOW_BIT_MASK 3
239#elif (UMAC_OUTPUT_LEN == 8)
240#define LOW_BIT_MASK 1
241#elif (UMAC_OUTPUT_LEN > 8)
242#define LOW_BIT_MASK 0
243#endif
244
245 UINT8 tmp_nonce_lo[4];
246#if LOW_BIT_MASK != 0
247 int ndx = nonce[7] & LOW_BIT_MASK;
248#endif
249 *(UINT32 *)tmp_nonce_lo = ((UINT32 *)nonce)[1];
250 tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
251
252 if ( (((UINT32 *)tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
253 (((UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
254 {
255 ((UINT32 *)pc->nonce)[0] = ((UINT32 *)nonce)[0];
256 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)tmp_nonce_lo)[0];
257 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
258 }
259
260#if (UMAC_OUTPUT_LEN == 4)
261 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
262#elif (UMAC_OUTPUT_LEN == 8)
263 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
264#elif (UMAC_OUTPUT_LEN == 12)
265 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
266 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
267#elif (UMAC_OUTPUT_LEN == 16)
268 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
269 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
270#endif
271}
272
273/* ---------------------------------------------------------------------- */
274/* ---------------------------------------------------------------------- */
275/* ----- Begin NH Hash Section ------------------------------------------ */
276/* ---------------------------------------------------------------------- */
277/* ---------------------------------------------------------------------- */
278
279/* The NH-based hash functions used in UMAC are described in the UMAC paper
280 * and specification, both of which can be found at the UMAC website.
281 * The interface to this implementation has two
282 * versions, one expects the entire message being hashed to be passed
283 * in a single buffer and returns the hash result immediately. The second
284 * allows the message to be passed in a sequence of buffers. In the
285 * muliple-buffer interface, the client calls the routine nh_update() as
286 * many times as necessary. When there is no more data to be fed to the
287 * hash, the client calls nh_final() which calculates the hash output.
288 * Before beginning another hash calculation the nh_reset() routine
289 * must be called. The single-buffer routine, nh(), is equivalent to
290 * the sequence of calls nh_update() and nh_final(); however it is
291 * optimized and should be prefered whenever the multiple-buffer interface
292 * is not necessary. When using either interface, it is the client's
293 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
294 *
295 * The routine nh_init() initializes the nh_ctx data structure and
296 * must be called once, before any other PDF routine.
297 */
298
299 /* The "nh_aux" routines do the actual NH hashing work. They
300 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
301 * produce output for all STREAMS NH iterations in one call,
302 * allowing the parallel implementation of the streams.
303 */
304
305#define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
306#define L1_KEY_LEN 1024 /* Internal key bytes */
307#define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
308#define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
309#define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
310#define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
311
312typedef struct {
313 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
314 UINT8 data [HASH_BUF_BYTES]; /* Incomming data buffer */
315 int next_data_empty; /* Bookeeping variable for data buffer. */
316 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */
317 UINT64 state[STREAMS]; /* on-line state */
318} nh_ctx;
319
320
321#if (UMAC_OUTPUT_LEN == 4)
322
323static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
324/* NH hashing primitive. Previous (partial) hash result is loaded and
325* then stored via hp pointer. The length of the data pointed at by "dp",
326* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
327* is expected to be endian compensated in memory at key setup.
328*/
329{
330 UINT64 h;
331 UWORD c = dlen / 32;
332 UINT32 *k = (UINT32 *)kp;
333 UINT32 *d = (UINT32 *)dp;
334 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
335 UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
336
337 h = *((UINT64 *)hp);
338 do {
339 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
340 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
341 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
342 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
343 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
344 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
345 h += MUL64((k0 + d0), (k4 + d4));
346 h += MUL64((k1 + d1), (k5 + d5));
347 h += MUL64((k2 + d2), (k6 + d6));
348 h += MUL64((k3 + d3), (k7 + d7));
349
350 d += 8;
351 k += 8;
352 } while (--c);
353 *((UINT64 *)hp) = h;
354}
355
356#elif (UMAC_OUTPUT_LEN == 8)
357
358static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
359/* Same as previous nh_aux, but two streams are handled in one pass,
360 * reading and writing 16 bytes of hash-state per call.
361 */
362{
363 UINT64 h1,h2;
364 UWORD c = dlen / 32;
365 UINT32 *k = (UINT32 *)kp;
366 UINT32 *d = (UINT32 *)dp;
367 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
368 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
369 k8,k9,k10,k11;
370
371 h1 = *((UINT64 *)hp);
372 h2 = *((UINT64 *)hp + 1);
373 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
374 do {
375 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
376 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
377 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
378 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
379 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
380 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
381
382 h1 += MUL64((k0 + d0), (k4 + d4));
383 h2 += MUL64((k4 + d0), (k8 + d4));
384
385 h1 += MUL64((k1 + d1), (k5 + d5));
386 h2 += MUL64((k5 + d1), (k9 + d5));
387
388 h1 += MUL64((k2 + d2), (k6 + d6));
389 h2 += MUL64((k6 + d2), (k10 + d6));
390
391 h1 += MUL64((k3 + d3), (k7 + d7));
392 h2 += MUL64((k7 + d3), (k11 + d7));
393
394 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
395
396 d += 8;
397 k += 8;
398 } while (--c);
399 ((UINT64 *)hp)[0] = h1;
400 ((UINT64 *)hp)[1] = h2;
401}
402
403#elif (UMAC_OUTPUT_LEN == 12)
404
405static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
406/* Same as previous nh_aux, but two streams are handled in one pass,
407 * reading and writing 24 bytes of hash-state per call.
408*/
409{
410 UINT64 h1,h2,h3;
411 UWORD c = dlen / 32;
412 UINT32 *k = (UINT32 *)kp;
413 UINT32 *d = (UINT32 *)dp;
414 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
415 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
416 k8,k9,k10,k11,k12,k13,k14,k15;
417
418 h1 = *((UINT64 *)hp);
419 h2 = *((UINT64 *)hp + 1);
420 h3 = *((UINT64 *)hp + 2);
421 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
422 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
423 do {
424 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
425 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
426 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
427 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
428 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
429 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
430
431 h1 += MUL64((k0 + d0), (k4 + d4));
432 h2 += MUL64((k4 + d0), (k8 + d4));
433 h3 += MUL64((k8 + d0), (k12 + d4));
434
435 h1 += MUL64((k1 + d1), (k5 + d5));
436 h2 += MUL64((k5 + d1), (k9 + d5));
437 h3 += MUL64((k9 + d1), (k13 + d5));
438
439 h1 += MUL64((k2 + d2), (k6 + d6));
440 h2 += MUL64((k6 + d2), (k10 + d6));
441 h3 += MUL64((k10 + d2), (k14 + d6));
442
443 h1 += MUL64((k3 + d3), (k7 + d7));
444 h2 += MUL64((k7 + d3), (k11 + d7));
445 h3 += MUL64((k11 + d3), (k15 + d7));
446
447 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
448 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
449
450 d += 8;
451 k += 8;
452 } while (--c);
453 ((UINT64 *)hp)[0] = h1;
454 ((UINT64 *)hp)[1] = h2;
455 ((UINT64 *)hp)[2] = h3;
456}
457
458#elif (UMAC_OUTPUT_LEN == 16)
459
460static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
461/* Same as previous nh_aux, but two streams are handled in one pass,
462 * reading and writing 24 bytes of hash-state per call.
463*/
464{
465 UINT64 h1,h2,h3,h4;
466 UWORD c = dlen / 32;
467 UINT32 *k = (UINT32 *)kp;
468 UINT32 *d = (UINT32 *)dp;
469 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
470 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
471 k8,k9,k10,k11,k12,k13,k14,k15,
472 k16,k17,k18,k19;
473
474 h1 = *((UINT64 *)hp);
475 h2 = *((UINT64 *)hp + 1);
476 h3 = *((UINT64 *)hp + 2);
477 h4 = *((UINT64 *)hp + 3);
478 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
479 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
480 do {
481 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
482 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
483 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
484 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
485 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
486 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
487 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
488
489 h1 += MUL64((k0 + d0), (k4 + d4));
490 h2 += MUL64((k4 + d0), (k8 + d4));
491 h3 += MUL64((k8 + d0), (k12 + d4));
492 h4 += MUL64((k12 + d0), (k16 + d4));
493
494 h1 += MUL64((k1 + d1), (k5 + d5));
495 h2 += MUL64((k5 + d1), (k9 + d5));
496 h3 += MUL64((k9 + d1), (k13 + d5));
497 h4 += MUL64((k13 + d1), (k17 + d5));
498
499 h1 += MUL64((k2 + d2), (k6 + d6));
500 h2 += MUL64((k6 + d2), (k10 + d6));
501 h3 += MUL64((k10 + d2), (k14 + d6));
502 h4 += MUL64((k14 + d2), (k18 + d6));
503
504 h1 += MUL64((k3 + d3), (k7 + d7));
505 h2 += MUL64((k7 + d3), (k11 + d7));
506 h3 += MUL64((k11 + d3), (k15 + d7));
507 h4 += MUL64((k15 + d3), (k19 + d7));
508
509 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
510 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
511 k8 = k16; k9 = k17; k10 = k18; k11 = k19;
512
513 d += 8;
514 k += 8;
515 } while (--c);
516 ((UINT64 *)hp)[0] = h1;
517 ((UINT64 *)hp)[1] = h2;
518 ((UINT64 *)hp)[2] = h3;
519 ((UINT64 *)hp)[3] = h4;
520}
521
522/* ---------------------------------------------------------------------- */
523#endif /* UMAC_OUTPUT_LENGTH */
524/* ---------------------------------------------------------------------- */
525
526
527/* ---------------------------------------------------------------------- */
528
529static void nh_transform(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
530/* This function is a wrapper for the primitive NH hash functions. It takes
531 * as argument "hc" the current hash context and a buffer which must be a
532 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
533 * appropriately according to how much message has been hashed already.
534 */
535{
536 UINT8 *key;
537
538 key = hc->nh_key + hc->bytes_hashed;
539 nh_aux(key, buf, hc->state, nbytes);
540}
541
542/* ---------------------------------------------------------------------- */
543
544static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
545/* We endian convert the keys on little-endian computers to */
546/* compensate for the lack of big-endian memory reads during hashing. */
547{
548 UWORD iters = num_bytes / bpw;
549 if (bpw == 4) {
550 UINT32 *p = (UINT32 *)buf;
551 do {
552 *p = LOAD_UINT32_REVERSED(p);
553 p++;
554 } while (--iters);
555 } else if (bpw == 8) {
556 UINT32 *p = (UINT32 *)buf;
557 UINT32 t;
558 do {
559 t = LOAD_UINT32_REVERSED(p+1);
560 p[1] = LOAD_UINT32_REVERSED(p);
561 p[0] = t;
562 p += 2;
563 } while (--iters);
564 }
565}
566#if (__LITTLE_ENDIAN__)
567#define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
568#else
569#define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
570#endif
571
572/* ---------------------------------------------------------------------- */
573
574static void nh_reset(nh_ctx *hc)
575/* Reset nh_ctx to ready for hashing of new data */
576{
577 hc->bytes_hashed = 0;
578 hc->next_data_empty = 0;
579 hc->state[0] = 0;
580#if (UMAC_OUTPUT_LEN >= 8)
581 hc->state[1] = 0;
582#endif
583#if (UMAC_OUTPUT_LEN >= 12)
584 hc->state[2] = 0;
585#endif
586#if (UMAC_OUTPUT_LEN == 16)
587 hc->state[3] = 0;
588#endif
589
590}
591
592/* ---------------------------------------------------------------------- */
593
594static void nh_init(nh_ctx *hc, aes_int_key prf_key)
595/* Generate nh_key, endian convert and reset to be ready for hashing. */
596{
597 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
598 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
599 nh_reset(hc);
600}
601
602/* ---------------------------------------------------------------------- */
603
604static void nh_update(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
605/* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
606/* even multiple of HASH_BUF_BYTES. */
607{
608 UINT32 i,j;
609
610 j = hc->next_data_empty;
611 if ((j + nbytes) >= HASH_BUF_BYTES) {
612 if (j) {
613 i = HASH_BUF_BYTES - j;
614 memcpy(hc->data+j, buf, i);
615 nh_transform(hc,hc->data,HASH_BUF_BYTES);
616 nbytes -= i;
617 buf += i;
618 hc->bytes_hashed += HASH_BUF_BYTES;
619 }
620 if (nbytes >= HASH_BUF_BYTES) {
621 i = nbytes & ~(HASH_BUF_BYTES - 1);
622 nh_transform(hc, buf, i);
623 nbytes -= i;
624 buf += i;
625 hc->bytes_hashed += i;
626 }
627 j = 0;
628 }
629 memcpy(hc->data + j, buf, nbytes);
630 hc->next_data_empty = j + nbytes;
631}
632
633/* ---------------------------------------------------------------------- */
634
635static void zero_pad(UINT8 *p, int nbytes)
636{
637/* Write "nbytes" of zeroes, beginning at "p" */
638 if (nbytes >= (int)sizeof(UWORD)) {
639 while ((ptrdiff_t)p % sizeof(UWORD)) {
640 *p = 0;
641 nbytes--;
642 p++;
643 }
644 while (nbytes >= (int)sizeof(UWORD)) {
645 *(UWORD *)p = 0;
646 nbytes -= sizeof(UWORD);
647 p += sizeof(UWORD);
648 }
649 }
650 while (nbytes) {
651 *p = 0;
652 nbytes--;
653 p++;
654 }
655}
656
657/* ---------------------------------------------------------------------- */
658
659static void nh_final(nh_ctx *hc, UINT8 *result)
660/* After passing some number of data buffers to nh_update() for integration
661 * into an NH context, nh_final is called to produce a hash result. If any
662 * bytes are in the buffer hc->data, incorporate them into the
663 * NH context. Finally, add into the NH accumulation "state" the total number
664 * of bits hashed. The resulting numbers are written to the buffer "result".
665 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
666 */
667{
668 int nh_len, nbits;
669
670 if (hc->next_data_empty != 0) {
671 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
672 ~(L1_PAD_BOUNDARY - 1));
673 zero_pad(hc->data + hc->next_data_empty,
674 nh_len - hc->next_data_empty);
675 nh_transform(hc, hc->data, nh_len);
676 hc->bytes_hashed += hc->next_data_empty;
677 } else if (hc->bytes_hashed == 0) {
678 nh_len = L1_PAD_BOUNDARY;
679 zero_pad(hc->data, L1_PAD_BOUNDARY);
680 nh_transform(hc, hc->data, nh_len);
681 }
682
683 nbits = (hc->bytes_hashed << 3);
684 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
685#if (UMAC_OUTPUT_LEN >= 8)
686 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
687#endif
688#if (UMAC_OUTPUT_LEN >= 12)
689 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
690#endif
691#if (UMAC_OUTPUT_LEN == 16)
692 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
693#endif
694 nh_reset(hc);
695}
696
697/* ---------------------------------------------------------------------- */
698
699static void nh(nh_ctx *hc, UINT8 *buf, UINT32 padded_len,
700 UINT32 unpadded_len, UINT8 *result)
701/* All-in-one nh_update() and nh_final() equivalent.
702 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
703 * well aligned
704 */
705{
706 UINT32 nbits;
707
708 /* Initialize the hash state */
709 nbits = (unpadded_len << 3);
710
711 ((UINT64 *)result)[0] = nbits;
712#if (UMAC_OUTPUT_LEN >= 8)
713 ((UINT64 *)result)[1] = nbits;
714#endif
715#if (UMAC_OUTPUT_LEN >= 12)
716 ((UINT64 *)result)[2] = nbits;
717#endif
718#if (UMAC_OUTPUT_LEN == 16)
719 ((UINT64 *)result)[3] = nbits;
720#endif
721
722 nh_aux(hc->nh_key, buf, result, padded_len);
723}
724
725/* ---------------------------------------------------------------------- */
726/* ---------------------------------------------------------------------- */
727/* ----- Begin UHASH Section -------------------------------------------- */
728/* ---------------------------------------------------------------------- */
729/* ---------------------------------------------------------------------- */
730
731/* UHASH is a multi-layered algorithm. Data presented to UHASH is first
732 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
733 * unless the initial data to be hashed is short. After the polynomial-
734 * layer, an inner-product hash is used to produce the final UHASH output.
735 *
736 * UHASH provides two interfaces, one all-at-once and another where data
737 * buffers are presented sequentially. In the sequential interface, the
738 * UHASH client calls the routine uhash_update() as many times as necessary.
739 * When there is no more data to be fed to UHASH, the client calls
740 * uhash_final() which
741 * calculates the UHASH output. Before beginning another UHASH calculation
742 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
743 * uhash(), is equivalent to the sequence of calls uhash_update() and
744 * uhash_final(); however it is optimized and should be
745 * used whenever the sequential interface is not necessary.
746 *
747 * The routine uhash_init() initializes the uhash_ctx data structure and
748 * must be called once, before any other UHASH routine.
749 */
750
751/* ---------------------------------------------------------------------- */
752/* ----- Constants and uhash_ctx ---------------------------------------- */
753/* ---------------------------------------------------------------------- */
754
755/* ---------------------------------------------------------------------- */
756/* ----- Poly hash and Inner-Product hash Constants --------------------- */
757/* ---------------------------------------------------------------------- */
758
759/* Primes and masks */
760#define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
761#define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
762#define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
763
764
765/* ---------------------------------------------------------------------- */
766
767typedef struct uhash_ctx {
768 nh_ctx hash; /* Hash context for L1 NH hash */
769 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */
770 UINT64 poly_accum[STREAMS]; /* poly hash result */
771 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */
772 UINT32 ip_trans[STREAMS]; /* Inner-product translation */
773 UINT32 msg_len; /* Total length of data passed */
774 /* to uhash */
775} uhash_ctx;
776typedef struct uhash_ctx *uhash_ctx_t;
777
778/* ---------------------------------------------------------------------- */
779
780
781/* The polynomial hashes use Horner's rule to evaluate a polynomial one
782 * word at a time. As described in the specification, poly32 and poly64
783 * require keys from special domains. The following implementations exploit
784 * the special domains to avoid overflow. The results are not guaranteed to
785 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
786 * patches any errant values.
787 */
788
789static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
790{
791 UINT32 key_hi = (UINT32)(key >> 32),
792 key_lo = (UINT32)key,
793 cur_hi = (UINT32)(cur >> 32),
794 cur_lo = (UINT32)cur,
795 x_lo,
796 x_hi;
797 UINT64 X,T,res;
798
799 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
800 x_lo = (UINT32)X;
801 x_hi = (UINT32)(X >> 32);
802
803 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
804
805 T = ((UINT64)x_lo << 32);
806 res += T;
807 if (res < T)
808 res += 59;
809
810 res += data;
811 if (res < data)
812 res += 59;
813
814 return res;
815}
816
817
818/* Although UMAC is specified to use a ramped polynomial hash scheme, this
819 * implementation does not handle all ramp levels. Because we don't handle
820 * the ramp up to p128 modulus in this implementation, we are limited to
821 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
822 * bytes input to UMAC per tag, ie. 16MB).
823 */
824static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
825{
826 int i;
827 UINT64 *data=(UINT64*)data_in;
828
829 for (i = 0; i < STREAMS; i++) {
830 if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
831 hc->poly_accum[i] = poly64(hc->poly_accum[i],
832 hc->poly_key_8[i], p64 - 1);
833 hc->poly_accum[i] = poly64(hc->poly_accum[i],
834 hc->poly_key_8[i], (data[i] - 59));
835 } else {
836 hc->poly_accum[i] = poly64(hc->poly_accum[i],
837 hc->poly_key_8[i], data[i]);
838 }
839 }
840}
841
842
843/* ---------------------------------------------------------------------- */
844
845
846/* The final step in UHASH is an inner-product hash. The poly hash
847 * produces a result not neccesarily WORD_LEN bytes long. The inner-
848 * product hash breaks the polyhash output into 16-bit chunks and
849 * multiplies each with a 36 bit key.
850 */
851
852static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
853{
854 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
855 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
856 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
857 t = t + ipkp[3] * (UINT64)(UINT16)(data);
858
859 return t;
860}
861
862static UINT32 ip_reduce_p36(UINT64 t)
863{
864/* Divisionless modular reduction */
865 UINT64 ret;
866
867 ret = (t & m36) + 5 * (t >> 36);
868 if (ret >= p36)
869 ret -= p36;
870
871 /* return least significant 32 bits */
872 return (UINT32)(ret);
873}
874
875
876/* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
877 * the polyhash stage is skipped and ip_short is applied directly to the
878 * NH output.
879 */
880static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
881{
882 UINT64 t;
883 UINT64 *nhp = (UINT64 *)nh_res;
884
885 t = ip_aux(0,ahc->ip_keys, nhp[0]);
886 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
887#if (UMAC_OUTPUT_LEN >= 8)
888 t = ip_aux(0,ahc->ip_keys+4, nhp[1]);
889 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
890#endif
891#if (UMAC_OUTPUT_LEN >= 12)
892 t = ip_aux(0,ahc->ip_keys+8, nhp[2]);
893 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
894#endif
895#if (UMAC_OUTPUT_LEN == 16)
896 t = ip_aux(0,ahc->ip_keys+12, nhp[3]);
897 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
898#endif
899}
900
901/* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
902 * the polyhash stage is not skipped and ip_long is applied to the
903 * polyhash output.
904 */
905static void ip_long(uhash_ctx_t ahc, u_char *res)
906{
907 int i;
908 UINT64 t;
909
910 for (i = 0; i < STREAMS; i++) {
911 /* fix polyhash output not in Z_p64 */
912 if (ahc->poly_accum[i] >= p64)
913 ahc->poly_accum[i] -= p64;
914 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
915 STORE_UINT32_BIG((UINT32 *)res+i,
916 ip_reduce_p36(t) ^ ahc->ip_trans[i]);
917 }
918}
919
920
921/* ---------------------------------------------------------------------- */
922
923/* ---------------------------------------------------------------------- */
924
925/* Reset uhash context for next hash session */
926static int uhash_reset(uhash_ctx_t pc)
927{
928 nh_reset(&pc->hash);
929 pc->msg_len = 0;
930 pc->poly_accum[0] = 1;
931#if (UMAC_OUTPUT_LEN >= 8)
932 pc->poly_accum[1] = 1;
933#endif
934#if (UMAC_OUTPUT_LEN >= 12)
935 pc->poly_accum[2] = 1;
936#endif
937#if (UMAC_OUTPUT_LEN == 16)
938 pc->poly_accum[3] = 1;
939#endif
940 return 1;
941}
942
943/* ---------------------------------------------------------------------- */
944
945/* Given a pointer to the internal key needed by kdf() and a uhash context,
946 * initialize the NH context and generate keys needed for poly and inner-
947 * product hashing. All keys are endian adjusted in memory so that native
948 * loads cause correct keys to be in registers during calculation.
949 */
950static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
951{
952 int i;
953 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
954
955 /* Zero the entire uhash context */
956 memset(ahc, 0, sizeof(uhash_ctx));
957
958 /* Initialize the L1 hash */
959 nh_init(&ahc->hash, prf_key);
960
961 /* Setup L2 hash variables */
962 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
963 for (i = 0; i < STREAMS; i++) {
964 /* Fill keys from the buffer, skipping bytes in the buffer not
965 * used by this implementation. Endian reverse the keys if on a
966 * little-endian computer.
967 */
968 memcpy(ahc->poly_key_8+i, buf+24*i, 8);
969 endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
970 /* Mask the 64-bit keys to their special domain */
971 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
972 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
973 }
974
975 /* Setup L3-1 hash variables */
976 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
977 for (i = 0; i < STREAMS; i++)
978 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
979 4*sizeof(UINT64));
980 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
981 sizeof(ahc->ip_keys));
982 for (i = 0; i < STREAMS*4; i++)
983 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */
984
985 /* Setup L3-2 hash variables */
986 /* Fill buffer with index 4 key */
987 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
988 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
989 STREAMS * sizeof(UINT32));
990}
991
992/* ---------------------------------------------------------------------- */
993
994#if 0
995static uhash_ctx_t uhash_alloc(u_char key[])
996{
997/* Allocate memory and force to a 16-byte boundary. */
998 uhash_ctx_t ctx;
999 u_char bytes_to_add;
1000 aes_int_key prf_key;
1001
1002 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1003 if (ctx) {
1004 if (ALLOC_BOUNDARY) {
1005 bytes_to_add = ALLOC_BOUNDARY -
1006 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1007 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1008 *((u_char *)ctx - 1) = bytes_to_add;
1009 }
1010 aes_key_setup(key,prf_key);
1011 uhash_init(ctx, prf_key);
1012 }
1013 return (ctx);
1014}
1015#endif
1016
1017/* ---------------------------------------------------------------------- */
1018
1019#if 0
1020static int uhash_free(uhash_ctx_t ctx)
1021{
1022/* Free memory allocated by uhash_alloc */
1023 u_char bytes_to_sub;
1024
1025 if (ctx) {
1026 if (ALLOC_BOUNDARY) {
1027 bytes_to_sub = *((u_char *)ctx - 1);
1028 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1029 }
1030 free(ctx);
1031 }
1032 return (1);
1033}
1034#endif
1035/* ---------------------------------------------------------------------- */
1036
1037static int uhash_update(uhash_ctx_t ctx, u_char *input, long len)
1038/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1039 * hash each one with NH, calling the polyhash on each NH output.
1040 */
1041{
1042 UWORD bytes_hashed, bytes_remaining;
1043 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1044
1045 if (ctx->msg_len + len <= L1_KEY_LEN) {
1046 nh_update(&ctx->hash, (UINT8 *)input, len);
1047 ctx->msg_len += len;
1048 } else {
1049
1050 bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1051 if (ctx->msg_len == L1_KEY_LEN)
1052 bytes_hashed = L1_KEY_LEN;
1053
1054 if (bytes_hashed + len >= L1_KEY_LEN) {
1055
1056 /* If some bytes have been passed to the hash function */
1057 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1058 /* bytes to complete the current nh_block. */
1059 if (bytes_hashed) {
1060 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1061 nh_update(&ctx->hash, (UINT8 *)input, bytes_remaining);
1062 nh_final(&ctx->hash, nh_result);
1063 ctx->msg_len += bytes_remaining;
1064 poly_hash(ctx,(UINT32 *)nh_result);
1065 len -= bytes_remaining;
1066 input += bytes_remaining;
1067 }
1068
1069 /* Hash directly from input stream if enough bytes */
1070 while (len >= L1_KEY_LEN) {
1071 nh(&ctx->hash, (UINT8 *)input, L1_KEY_LEN,
1072 L1_KEY_LEN, nh_result);
1073 ctx->msg_len += L1_KEY_LEN;
1074 len -= L1_KEY_LEN;
1075 input += L1_KEY_LEN;
1076 poly_hash(ctx,(UINT32 *)nh_result);
1077 }
1078 }
1079
1080 /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1081 if (len) {
1082 nh_update(&ctx->hash, (UINT8 *)input, len);
1083 ctx->msg_len += len;
1084 }
1085 }
1086
1087 return (1);
1088}
1089
1090/* ---------------------------------------------------------------------- */
1091
1092static int uhash_final(uhash_ctx_t ctx, u_char *res)
1093/* Incorporate any pending data, pad, and generate tag */
1094{
1095 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1096
1097 if (ctx->msg_len > L1_KEY_LEN) {
1098 if (ctx->msg_len % L1_KEY_LEN) {
1099 nh_final(&ctx->hash, nh_result);
1100 poly_hash(ctx,(UINT32 *)nh_result);
1101 }
1102 ip_long(ctx, res);
1103 } else {
1104 nh_final(&ctx->hash, nh_result);
1105 ip_short(ctx,nh_result, res);
1106 }
1107 uhash_reset(ctx);
1108 return (1);
1109}
1110
1111/* ---------------------------------------------------------------------- */
1112
1113#if 0
1114static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1115/* assumes that msg is in a writable buffer of length divisible by */
1116/* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
1117{
1118 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1119 UINT32 nh_len;
1120 int extra_zeroes_needed;
1121
1122 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1123 * the polyhash.
1124 */
1125 if (len <= L1_KEY_LEN) {
1126 if (len == 0) /* If zero length messages will not */
1127 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */
1128 else
1129 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1130 extra_zeroes_needed = nh_len - len;
1131 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1132 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1133 ip_short(ahc,nh_result, res);
1134 } else {
1135 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1136 * output to poly_hash().
1137 */
1138 do {
1139 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1140 poly_hash(ahc,(UINT32 *)nh_result);
1141 len -= L1_KEY_LEN;
1142 msg += L1_KEY_LEN;
1143 } while (len >= L1_KEY_LEN);
1144 if (len) {
1145 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1146 extra_zeroes_needed = nh_len - len;
1147 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1148 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1149 poly_hash(ahc,(UINT32 *)nh_result);
1150 }
1151
1152 ip_long(ahc, res);
1153 }
1154
1155 uhash_reset(ahc);
1156 return 1;
1157}
1158#endif
1159
1160/* ---------------------------------------------------------------------- */
1161/* ---------------------------------------------------------------------- */
1162/* ----- Begin UMAC Section --------------------------------------------- */
1163/* ---------------------------------------------------------------------- */
1164/* ---------------------------------------------------------------------- */
1165
1166/* The UMAC interface has two interfaces, an all-at-once interface where
1167 * the entire message to be authenticated is passed to UMAC in one buffer,
1168 * and a sequential interface where the message is presented a little at a
1169 * time. The all-at-once is more optimaized than the sequential version and
1170 * should be preferred when the sequential interface is not required.
1171 */
1172struct umac_ctx {
1173 uhash_ctx hash; /* Hash function for message compression */
1174 pdf_ctx pdf; /* PDF for hashed output */
1175 void *free_ptr; /* Address to free this struct via */
1176} umac_ctx;
1177
1178/* ---------------------------------------------------------------------- */
1179
1180#if 0
1181int umac_reset(struct umac_ctx *ctx)
1182/* Reset the hash function to begin a new authentication. */
1183{
1184 uhash_reset(&ctx->hash);
1185 return (1);
1186}
1187#endif
1188
1189/* ---------------------------------------------------------------------- */
1190
1191int umac_delete(struct umac_ctx *ctx)
1192/* Deallocate the ctx structure */
1193{
1194 if (ctx) {
1195 if (ALLOC_BOUNDARY)
1196 ctx = (struct umac_ctx *)ctx->free_ptr;
1197 free(ctx);
1198 }
1199 return (1);
1200}
1201
1202/* ---------------------------------------------------------------------- */
1203
1204struct umac_ctx *umac_new(u_char key[])
1205/* Dynamically allocate a umac_ctx struct, initialize variables,
1206 * generate subkeys from key. Align to 16-byte boundary.
1207 */
1208{
1209 struct umac_ctx *ctx, *octx;
1210 size_t bytes_to_add;
1211 aes_int_key prf_key;
1212
1213 octx = ctx = malloc(sizeof(*ctx) + ALLOC_BOUNDARY);
1214 if (ctx) {
1215 if (ALLOC_BOUNDARY) {
1216 bytes_to_add = ALLOC_BOUNDARY -
1217 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1218 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1219 }
1220 ctx->free_ptr = octx;
1221 aes_key_setup(key,prf_key);
1222 pdf_init(&ctx->pdf, prf_key);
1223 uhash_init(&ctx->hash, prf_key);
1224 }
1225
1226 return (ctx);
1227}
1228
1229/* ---------------------------------------------------------------------- */
1230
1231int umac_final(struct umac_ctx *ctx, u_char tag[], u_char nonce[8])
1232/* Incorporate any pending data, pad, and generate tag */
1233{
1234 uhash_final(&ctx->hash, (u_char *)tag);
1235 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1236
1237 return (1);
1238}
1239
1240/* ---------------------------------------------------------------------- */
1241
1242int umac_update(struct umac_ctx *ctx, u_char *input, long len)
1243/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
1244/* hash each one, calling the PDF on the hashed output whenever the hash- */
1245/* output buffer is full. */
1246{
1247 uhash_update(&ctx->hash, input, len);
1248 return (1);
1249}
1250
1251/* ---------------------------------------------------------------------- */
1252
1253#if 0
1254int umac(struct umac_ctx *ctx, u_char *input,
1255 long len, u_char tag[],
1256 u_char nonce[8])
1257/* All-in-one version simply calls umac_update() and umac_final(). */
1258{
1259 uhash(&ctx->hash, input, len, (u_char *)tag);
1260 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1261
1262 return (1);
1263}
1264#endif
1265
1266/* ---------------------------------------------------------------------- */
1267/* ---------------------------------------------------------------------- */
1268/* ----- End UMAC Section ----------------------------------------------- */
1269/* ---------------------------------------------------------------------- */
1270/* ---------------------------------------------------------------------- */
This page took 0.443218 seconds and 5 git commands to generate.