]> andersk Git - openssh.git/blame - moduli.c
- (dtucker) [auth-pam.c scard-opensc.c] Tinderbox says auth-pam.c uses
[openssh.git] / moduli.c
CommitLineData
20eea1d7 1/* $OpenBSD: moduli.c,v 1.7 2004/05/09 00:06:47 djm Exp $ */
5ae3dc68 2/*
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Two-step process to generate safe primes for DHGEX
31 *
32 * Sieve candidates for "safe" primes,
33 * suitable for use as Diffie-Hellman moduli;
34 * that is, where q = (p-1)/2 is also prime.
35 *
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
38 */
39
40#include "includes.h"
5ae3dc68 41#include "xmalloc.h"
42#include "log.h"
43
44#include <openssl/bn.h>
45
5ae3dc68 46/*
47 * File output defines
48 */
49
50/* need line long enough for largest moduli plus headers */
51#define QLINESIZE (100+8192)
52
53/* Type: decimal.
54 * Specifies the internal structure of the prime modulus.
55 */
56#define QTYPE_UNKNOWN (0)
57#define QTYPE_UNSTRUCTURED (1)
58#define QTYPE_SAFE (2)
59#define QTYPE_SCHNOOR (3)
df5a0d7e 60#define QTYPE_SOPHIE_GERMAIN (4)
5ae3dc68 61#define QTYPE_STRONG (5)
62
63/* Tests: decimal (bit field).
64 * Specifies the methods used in checking for primality.
65 * Usually, more than one test is used.
66 */
67#define QTEST_UNTESTED (0x00)
68#define QTEST_COMPOSITE (0x01)
69#define QTEST_SIEVE (0x02)
70#define QTEST_MILLER_RABIN (0x04)
71#define QTEST_JACOBI (0x08)
72#define QTEST_ELLIPTIC (0x10)
73
c6fbc95a 74/*
75 * Size: decimal.
5ae3dc68 76 * Specifies the number of the most significant bit (0 to M).
c6fbc95a 77 * WARNING: internally, usually 1 to N.
5ae3dc68 78 */
79#define QSIZE_MINIMUM (511)
80
81/*
82 * Prime sieving defines
83 */
84
85/* Constant: assuming 8 bit bytes and 32 bit words */
86#define SHIFT_BIT (3)
87#define SHIFT_BYTE (2)
88#define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
89#define SHIFT_MEGABYTE (20)
90#define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
91
20eea1d7 92/*
93 * Using virtual memory can cause thrashing. This should be the largest
94 * number that is supported without a large amount of disk activity --
95 * that would increase the run time from hours to days or weeks!
96 */
97#define LARGE_MINIMUM (8UL) /* megabytes */
98
99/*
100 * Do not increase this number beyond the unsigned integer bit size.
101 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
102 */
103#define LARGE_MAXIMUM (127UL) /* megabytes */
104
5ae3dc68 105/*
106 * Constant: when used with 32-bit integers, the largest sieve prime
107 * has to be less than 2**32.
108 */
109#define SMALL_MAXIMUM (0xffffffffUL)
110
111/* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
112#define TINY_NUMBER (1UL<<16)
113
114/* Ensure enough bit space for testing 2*q. */
115#define TEST_MAXIMUM (1UL<<16)
116#define TEST_MINIMUM (QSIZE_MINIMUM + 1)
117/* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
118#define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
119
120/* bit operations on 32-bit words */
121#define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
122#define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
123#define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
124
125/*
126 * Prime testing defines
127 */
128
20eea1d7 129/* Minimum number of primality tests to perform */
130#define TRIAL_MINIMUM (4)
131
5ae3dc68 132/*
133 * Sieving data (XXX - move to struct)
134 */
135
136/* sieve 2**16 */
137static u_int32_t *TinySieve, tinybits;
138
139/* sieve 2**30 in 2**16 parts */
140static u_int32_t *SmallSieve, smallbits, smallbase;
141
142/* sieve relative to the initial value */
143static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
144static u_int32_t largebits, largememory; /* megabytes */
145static BIGNUM *largebase;
146
147
148/*
149 * print moduli out in consistent form,
150 */
151static int
152qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
153 u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
154{
155 struct tm *gtm;
156 time_t time_now;
157 int res;
158
159 time(&time_now);
160 gtm = gmtime(&time_now);
b6453d99 161
5ae3dc68 162 res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
163 gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
164 gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
165 otype, otests, otries, osize, ogenerator);
166
167 if (res < 0)
168 return (-1);
169
170 if (BN_print_fp(ofile, omodulus) < 1)
171 return (-1);
172
173 res = fprintf(ofile, "\n");
174 fflush(ofile);
175
176 return (res > 0 ? 0 : -1);
177}
178
179
180/*
181 ** Sieve p's and q's with small factors
182 */
183static void
184sieve_large(u_int32_t s)
185{
186 u_int32_t r, u;
187
c6fbc95a 188 debug3("sieve_large %u", s);
5ae3dc68 189 largetries++;
190 /* r = largebase mod s */
191 r = BN_mod_word(largebase, s);
192 if (r == 0)
193 u = 0; /* s divides into largebase exactly */
194 else
195 u = s - r; /* largebase+u is first entry divisible by s */
196
197 if (u < largebits * 2) {
198 /*
199 * The sieve omits p's and q's divisible by 2, so ensure that
200 * largebase+u is odd. Then, step through the sieve in
201 * increments of 2*s
202 */
203 if (u & 0x1)
204 u += s; /* Make largebase+u odd, and u even */
205
206 /* Mark all multiples of 2*s */
207 for (u /= 2; u < largebits; u += s)
208 BIT_SET(LargeSieve, u);
209 }
210
211 /* r = p mod s */
212 r = (2 * r + 1) % s;
213 if (r == 0)
214 u = 0; /* s divides p exactly */
215 else
216 u = s - r; /* p+u is first entry divisible by s */
217
218 if (u < largebits * 4) {
219 /*
220 * The sieve omits p's divisible by 4, so ensure that
221 * largebase+u is not. Then, step through the sieve in
222 * increments of 4*s
223 */
224 while (u & 0x3) {
225 if (SMALL_MAXIMUM - u < s)
226 return;
227 u += s;
228 }
229
230 /* Mark all multiples of 4*s */
231 for (u /= 4; u < largebits; u += s)
232 BIT_SET(LargeSieve, u);
233 }
234}
235
236/*
df5a0d7e 237 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
5ae3dc68 238 * to standard output.
239 * The list is checked against small known primes (less than 2**30).
240 */
241int
242gen_candidates(FILE *out, int memory, int power, BIGNUM *start)
243{
244 BIGNUM *q;
245 u_int32_t j, r, s, t;
246 u_int32_t smallwords = TINY_NUMBER >> 6;
247 u_int32_t tinywords = TINY_NUMBER >> 6;
248 time_t time_start, time_stop;
249 int i, ret = 0;
250
251 largememory = memory;
252
20eea1d7 253 if (memory != 0 &&
254 (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
255 error("Invalid memory amount (min %ld, max %ld)",
256 LARGE_MINIMUM, LARGE_MAXIMUM);
257 return (-1);
258 }
259
5ae3dc68 260 /*
aff51935 261 * Set power to the length in bits of the prime to be generated.
262 * This is changed to 1 less than the desired safe prime moduli p.
263 */
5ae3dc68 264 if (power > TEST_MAXIMUM) {
265 error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
266 return (-1);
267 } else if (power < TEST_MINIMUM) {
268 error("Too few bits: %u < %u", power, TEST_MINIMUM);
269 return (-1);
270 }
271 power--; /* decrement before squaring */
272
273 /*
aff51935 274 * The density of ordinary primes is on the order of 1/bits, so the
275 * density of safe primes should be about (1/bits)**2. Set test range
276 * to something well above bits**2 to be reasonably sure (but not
277 * guaranteed) of catching at least one safe prime.
5ae3dc68 278 */
279 largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
280
281 /*
aff51935 282 * Need idea of how much memory is available. We don't have to use all
283 * of it.
5ae3dc68 284 */
285 if (largememory > LARGE_MAXIMUM) {
286 logit("Limited memory: %u MB; limit %lu MB",
287 largememory, LARGE_MAXIMUM);
288 largememory = LARGE_MAXIMUM;
289 }
290
291 if (largewords <= (largememory << SHIFT_MEGAWORD)) {
292 logit("Increased memory: %u MB; need %u bytes",
293 largememory, (largewords << SHIFT_BYTE));
294 largewords = (largememory << SHIFT_MEGAWORD);
295 } else if (largememory > 0) {
296 logit("Decreased memory: %u MB; want %u bytes",
297 largememory, (largewords << SHIFT_BYTE));
298 largewords = (largememory << SHIFT_MEGAWORD);
299 }
300
301 TinySieve = calloc(tinywords, sizeof(u_int32_t));
302 if (TinySieve == NULL) {
303 error("Insufficient memory for tiny sieve: need %u bytes",
304 tinywords << SHIFT_BYTE);
305 exit(1);
306 }
307 tinybits = tinywords << SHIFT_WORD;
308
309 SmallSieve = calloc(smallwords, sizeof(u_int32_t));
310 if (SmallSieve == NULL) {
311 error("Insufficient memory for small sieve: need %u bytes",
312 smallwords << SHIFT_BYTE);
313 xfree(TinySieve);
314 exit(1);
315 }
316 smallbits = smallwords << SHIFT_WORD;
317
318 /*
319 * dynamically determine available memory
320 */
321 while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
322 largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
323
324 largebits = largewords << SHIFT_WORD;
325 largenumbers = largebits * 2; /* even numbers excluded */
326
327 /* validation check: count the number of primes tried */
328 largetries = 0;
329 q = BN_new();
330
331 /*
aff51935 332 * Generate random starting point for subprime search, or use
333 * specified parameter.
5ae3dc68 334 */
335 largebase = BN_new();
336 if (start == NULL)
337 BN_rand(largebase, power, 1, 1);
338 else
339 BN_copy(largebase, start);
340
341 /* ensure odd */
342 BN_set_bit(largebase, 0);
343
344 time(&time_start);
345
aff51935 346 logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
5ae3dc68 347 largenumbers, power);
348 debug2("start point: 0x%s", BN_bn2hex(largebase));
349
350 /*
aff51935 351 * TinySieve
352 */
5ae3dc68 353 for (i = 0; i < tinybits; i++) {
354 if (BIT_TEST(TinySieve, i))
355 continue; /* 2*i+3 is composite */
356
357 /* The next tiny prime */
358 t = 2 * i + 3;
359
360 /* Mark all multiples of t */
361 for (j = i + t; j < tinybits; j += t)
362 BIT_SET(TinySieve, j);
363
364 sieve_large(t);
365 }
366
367 /*
aff51935 368 * Start the small block search at the next possible prime. To avoid
369 * fencepost errors, the last pass is skipped.
370 */
5ae3dc68 371 for (smallbase = TINY_NUMBER + 3;
372 smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
373 smallbase += TINY_NUMBER) {
374 for (i = 0; i < tinybits; i++) {
375 if (BIT_TEST(TinySieve, i))
376 continue; /* 2*i+3 is composite */
377
378 /* The next tiny prime */
379 t = 2 * i + 3;
380 r = smallbase % t;
381
382 if (r == 0) {
383 s = 0; /* t divides into smallbase exactly */
384 } else {
385 /* smallbase+s is first entry divisible by t */
386 s = t - r;
387 }
388
389 /*
390 * The sieve omits even numbers, so ensure that
391 * smallbase+s is odd. Then, step through the sieve
392 * in increments of 2*t
393 */
394 if (s & 1)
395 s += t; /* Make smallbase+s odd, and s even */
396
397 /* Mark all multiples of 2*t */
398 for (s /= 2; s < smallbits; s += t)
399 BIT_SET(SmallSieve, s);
400 }
401
402 /*
aff51935 403 * SmallSieve
404 */
5ae3dc68 405 for (i = 0; i < smallbits; i++) {
406 if (BIT_TEST(SmallSieve, i))
407 continue; /* 2*i+smallbase is composite */
408
409 /* The next small prime */
410 sieve_large((2 * i) + smallbase);
411 }
412
413 memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
414 }
415
416 time(&time_stop);
417
418 logit("%.24s Sieved with %u small primes in %ld seconds",
419 ctime(&time_stop), largetries, (long) (time_stop - time_start));
420
421 for (j = r = 0; j < largebits; j++) {
422 if (BIT_TEST(LargeSieve, j))
423 continue; /* Definitely composite, skip */
424
425 debug2("test q = largebase+%u", 2 * j);
426 BN_set_word(q, 2 * j);
427 BN_add(q, q, largebase);
df5a0d7e 428 if (qfileout(out, QTYPE_SOPHIE_GERMAIN, QTEST_SIEVE,
5ae3dc68 429 largetries, (power - 1) /* MSB */, (0), q) == -1) {
430 ret = -1;
431 break;
432 }
433
434 r++; /* count q */
435 }
436
437 time(&time_stop);
438
439 xfree(LargeSieve);
440 xfree(SmallSieve);
441 xfree(TinySieve);
442
443 logit("%.24s Found %u candidates", ctime(&time_stop), r);
444
445 return (ret);
446}
447
448/*
449 * perform a Miller-Rabin primality test
450 * on the list of candidates
451 * (checking both q and p)
452 * The result is a list of so-call "safe" primes
453 */
454int
20eea1d7 455prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted)
5ae3dc68 456{
457 BIGNUM *q, *p, *a;
458 BN_CTX *ctx;
459 char *cp, *lp;
460 u_int32_t count_in = 0, count_out = 0, count_possible = 0;
461 u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
462 time_t time_start, time_stop;
463 int res;
464
20eea1d7 465 if (trials < TRIAL_MINIMUM) {
466 error("Minimum primality trials is %d", TRIAL_MINIMUM);
467 return (-1);
468 }
469
5ae3dc68 470 time(&time_start);
471
472 p = BN_new();
473 q = BN_new();
474 ctx = BN_CTX_new();
475
476 debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
477 ctime(&time_start), trials, generator_wanted);
478
479 res = 0;
480 lp = xmalloc(QLINESIZE + 1);
481 while (fgets(lp, QLINESIZE, in) != NULL) {
482 int ll = strlen(lp);
483
484 count_in++;
485 if (ll < 14 || *lp == '!' || *lp == '#') {
486 debug2("%10u: comment or short line", count_in);
487 continue;
488 }
489
490 /* XXX - fragile parser */
491 /* time */
492 cp = &lp[14]; /* (skip) */
493
494 /* type */
495 in_type = strtoul(cp, &cp, 10);
496
497 /* tests */
498 in_tests = strtoul(cp, &cp, 10);
499
500 if (in_tests & QTEST_COMPOSITE) {
501 debug2("%10u: known composite", count_in);
502 continue;
503 }
c6fbc95a 504
5ae3dc68 505 /* tries */
506 in_tries = strtoul(cp, &cp, 10);
507
508 /* size (most significant bit) */
509 in_size = strtoul(cp, &cp, 10);
510
511 /* generator (hex) */
512 generator_known = strtoul(cp, &cp, 16);
513
514 /* Skip white space */
515 cp += strspn(cp, " ");
516
517 /* modulus (hex) */
518 switch (in_type) {
df5a0d7e 519 case QTYPE_SOPHIE_GERMAIN:
520 debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
5ae3dc68 521 a = q;
522 BN_hex2bn(&a, cp);
523 /* p = 2*q + 1 */
524 BN_lshift(p, q, 1);
525 BN_add_word(p, 1);
526 in_size += 1;
527 generator_known = 0;
528 break;
c6fbc95a 529 case QTYPE_UNSTRUCTURED:
530 case QTYPE_SAFE:
531 case QTYPE_SCHNOOR:
532 case QTYPE_STRONG:
533 case QTYPE_UNKNOWN:
5ae3dc68 534 debug2("%10u: (%u)", count_in, in_type);
535 a = p;
536 BN_hex2bn(&a, cp);
537 /* q = (p-1) / 2 */
538 BN_rshift(q, p, 1);
539 break;
c6fbc95a 540 default:
541 debug2("Unknown prime type");
542 break;
5ae3dc68 543 }
544
545 /*
546 * due to earlier inconsistencies in interpretation, check
547 * the proposed bit size.
548 */
549 if (BN_num_bits(p) != (in_size + 1)) {
550 debug2("%10u: bit size %u mismatch", count_in, in_size);
551 continue;
552 }
553 if (in_size < QSIZE_MINIMUM) {
554 debug2("%10u: bit size %u too short", count_in, in_size);
555 continue;
556 }
557
558 if (in_tests & QTEST_MILLER_RABIN)
559 in_tries += trials;
560 else
561 in_tries = trials;
c6fbc95a 562
5ae3dc68 563 /*
564 * guess unknown generator
565 */
566 if (generator_known == 0) {
567 if (BN_mod_word(p, 24) == 11)
568 generator_known = 2;
569 else if (BN_mod_word(p, 12) == 5)
570 generator_known = 3;
571 else {
572 u_int32_t r = BN_mod_word(p, 10);
573
c6fbc95a 574 if (r == 3 || r == 7)
5ae3dc68 575 generator_known = 5;
5ae3dc68 576 }
577 }
578 /*
579 * skip tests when desired generator doesn't match
580 */
581 if (generator_wanted > 0 &&
582 generator_wanted != generator_known) {
583 debug2("%10u: generator %d != %d",
584 count_in, generator_known, generator_wanted);
585 continue;
586 }
587
eb7a33b8 588 /*
589 * Primes with no known generator are useless for DH, so
590 * skip those.
591 */
592 if (generator_known == 0) {
593 debug2("%10u: no known generator", count_in);
594 continue;
595 }
596
5ae3dc68 597 count_possible++;
598
599 /*
aff51935 600 * The (1/4)^N performance bound on Miller-Rabin is
601 * extremely pessimistic, so don't spend a lot of time
602 * really verifying that q is prime until after we know
603 * that p is also prime. A single pass will weed out the
5ae3dc68 604 * vast majority of composite q's.
605 */
606 if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) {
c6fbc95a 607 debug("%10u: q failed first possible prime test",
5ae3dc68 608 count_in);
609 continue;
610 }
b6453d99 611
5ae3dc68 612 /*
aff51935 613 * q is possibly prime, so go ahead and really make sure
614 * that p is prime. If it is, then we can go back and do
615 * the same for q. If p is composite, chances are that
5ae3dc68 616 * will show up on the first Rabin-Miller iteration so it
617 * doesn't hurt to specify a high iteration count.
618 */
619 if (!BN_is_prime(p, trials, NULL, ctx, NULL)) {
c6fbc95a 620 debug("%10u: p is not prime", count_in);
5ae3dc68 621 continue;
622 }
623 debug("%10u: p is almost certainly prime", count_in);
624
625 /* recheck q more rigorously */
626 if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) {
627 debug("%10u: q is not prime", count_in);
628 continue;
629 }
630 debug("%10u: q is almost certainly prime", count_in);
631
aff51935 632 if (qfileout(out, QTYPE_SAFE, (in_tests | QTEST_MILLER_RABIN),
5ae3dc68 633 in_tries, in_size, generator_known, p)) {
634 res = -1;
635 break;
636 }
637
638 count_out++;
639 }
640
641 time(&time_stop);
642 xfree(lp);
643 BN_free(p);
644 BN_free(q);
645 BN_CTX_free(ctx);
646
647 logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
aff51935 648 ctime(&time_stop), count_out, count_possible,
5ae3dc68 649 (long) (time_stop - time_start));
650
651 return (res);
652}
This page took 0.244836 seconds and 5 git commands to generate.