]> andersk Git - gssapi-openssh.git/blame - openssh/openbsd-compat/sys-queue.h
Initial revision
[gssapi-openssh.git] / openssh / openbsd-compat / sys-queue.h
CommitLineData
cc0583a1 1/* $OpenBSD: queue.h,v 1.22 2001/06/23 04:39:35 angelos Exp $ */
2/* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
3
4/*
5 * Copyright (c) 1991, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)queue.h 8.5 (Berkeley) 8/20/94
37 */
38
39#ifndef _FAKE_QUEUE_H_
40#define _FAKE_QUEUE_H_
41
42/*
43 * Ignore all <sys/queue.h> since older platforms have broken/incomplete
44 * <sys/queue.h> that are too hard to work around.
45 */
46#undef SLIST_HEAD
47#undef SLIST_HEAD_INITIALIZER
48#undef SLIST_ENTRY
49#undef SLIST_FIRST
50#undef SLIST_END
51#undef SLIST_EMPTY
52#undef SLIST_NEXT
53#undef SLIST_FOREACH
54#undef SLIST_INIT
55#undef SLIST_INSERT_AFTER
56#undef SLIST_INSERT_HEAD
57#undef SLIST_REMOVE_HEAD
58#undef SLIST_REMOVE
59#undef LIST_HEAD
60#undef LIST_HEAD_INITIALIZER
61#undef LIST_ENTRY
62#undef LIST_FIRST
63#undef LIST_END
64#undef LIST_EMPTY
65#undef LIST_NEXT
66#undef LIST_FOREACH
67#undef LIST_INIT
68#undef LIST_INSERT_AFTER
69#undef LIST_INSERT_BEFORE
70#undef LIST_INSERT_HEAD
71#undef LIST_REMOVE
72#undef LIST_REPLACE
73#undef SIMPLEQ_HEAD
74#undef SIMPLEQ_HEAD_INITIALIZER
75#undef SIMPLEQ_ENTRY
76#undef SIMPLEQ_FIRST
77#undef SIMPLEQ_END
78#undef SIMPLEQ_EMPTY
79#undef SIMPLEQ_NEXT
80#undef SIMPLEQ_FOREACH
81#undef SIMPLEQ_INIT
82#undef SIMPLEQ_INSERT_HEAD
83#undef SIMPLEQ_INSERT_TAIL
84#undef SIMPLEQ_INSERT_AFTER
85#undef SIMPLEQ_REMOVE_HEAD
86#undef TAILQ_HEAD
87#undef TAILQ_HEAD_INITIALIZER
88#undef TAILQ_ENTRY
89#undef TAILQ_FIRST
90#undef TAILQ_END
91#undef TAILQ_NEXT
92#undef TAILQ_LAST
93#undef TAILQ_PREV
94#undef TAILQ_EMPTY
95#undef TAILQ_FOREACH
96#undef TAILQ_FOREACH_REVERSE
97#undef TAILQ_INIT
98#undef TAILQ_INSERT_HEAD
99#undef TAILQ_INSERT_TAIL
100#undef TAILQ_INSERT_AFTER
101#undef TAILQ_INSERT_BEFORE
102#undef TAILQ_REMOVE
103#undef TAILQ_REPLACE
104#undef CIRCLEQ_HEAD
105#undef CIRCLEQ_HEAD_INITIALIZER
106#undef CIRCLEQ_ENTRY
107#undef CIRCLEQ_FIRST
108#undef CIRCLEQ_LAST
109#undef CIRCLEQ_END
110#undef CIRCLEQ_NEXT
111#undef CIRCLEQ_PREV
112#undef CIRCLEQ_EMPTY
113#undef CIRCLEQ_FOREACH
114#undef CIRCLEQ_FOREACH_REVERSE
115#undef CIRCLEQ_INIT
116#undef CIRCLEQ_INSERT_AFTER
117#undef CIRCLEQ_INSERT_BEFORE
118#undef CIRCLEQ_INSERT_HEAD
119#undef CIRCLEQ_INSERT_TAIL
120#undef CIRCLEQ_REMOVE
121#undef CIRCLEQ_REPLACE
122
123/*
124 * This file defines five types of data structures: singly-linked lists,
125 * lists, simple queues, tail queues, and circular queues.
126 *
127 *
128 * A singly-linked list is headed by a single forward pointer. The elements
129 * are singly linked for minimum space and pointer manipulation overhead at
130 * the expense of O(n) removal for arbitrary elements. New elements can be
131 * added to the list after an existing element or at the head of the list.
132 * Elements being removed from the head of the list should use the explicit
133 * macro for this purpose for optimum efficiency. A singly-linked list may
134 * only be traversed in the forward direction. Singly-linked lists are ideal
135 * for applications with large datasets and few or no removals or for
136 * implementing a LIFO queue.
137 *
138 * A list is headed by a single forward pointer (or an array of forward
139 * pointers for a hash table header). The elements are doubly linked
140 * so that an arbitrary element can be removed without a need to
141 * traverse the list. New elements can be added to the list before
142 * or after an existing element or at the head of the list. A list
143 * may only be traversed in the forward direction.
144 *
145 * A simple queue is headed by a pair of pointers, one the head of the
146 * list and the other to the tail of the list. The elements are singly
147 * linked to save space, so elements can only be removed from the
148 * head of the list. New elements can be added to the list before or after
149 * an existing element, at the head of the list, or at the end of the
150 * list. A simple queue may only be traversed in the forward direction.
151 *
152 * A tail queue is headed by a pair of pointers, one to the head of the
153 * list and the other to the tail of the list. The elements are doubly
154 * linked so that an arbitrary element can be removed without a need to
155 * traverse the list. New elements can be added to the list before or
156 * after an existing element, at the head of the list, or at the end of
157 * the list. A tail queue may be traversed in either direction.
158 *
159 * A circle queue is headed by a pair of pointers, one to the head of the
160 * list and the other to the tail of the list. The elements are doubly
161 * linked so that an arbitrary element can be removed without a need to
162 * traverse the list. New elements can be added to the list before or after
163 * an existing element, at the head of the list, or at the end of the list.
164 * A circle queue may be traversed in either direction, but has a more
165 * complex end of list detection.
166 *
167 * For details on the use of these macros, see the queue(3) manual page.
168 */
169
170/*
171 * Singly-linked List definitions.
172 */
173#define SLIST_HEAD(name, type) \
174struct name { \
175 struct type *slh_first; /* first element */ \
176}
177
178#define SLIST_HEAD_INITIALIZER(head) \
179 { NULL }
180
181#define SLIST_ENTRY(type) \
182struct { \
183 struct type *sle_next; /* next element */ \
184}
185
186/*
187 * Singly-linked List access methods.
188 */
189#define SLIST_FIRST(head) ((head)->slh_first)
190#define SLIST_END(head) NULL
191#define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
192#define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
193
194#define SLIST_FOREACH(var, head, field) \
195 for((var) = SLIST_FIRST(head); \
196 (var) != SLIST_END(head); \
197 (var) = SLIST_NEXT(var, field))
198
199/*
200 * Singly-linked List functions.
201 */
202#define SLIST_INIT(head) { \
203 SLIST_FIRST(head) = SLIST_END(head); \
204}
205
206#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
207 (elm)->field.sle_next = (slistelm)->field.sle_next; \
208 (slistelm)->field.sle_next = (elm); \
209} while (0)
210
211#define SLIST_INSERT_HEAD(head, elm, field) do { \
212 (elm)->field.sle_next = (head)->slh_first; \
213 (head)->slh_first = (elm); \
214} while (0)
215
216#define SLIST_REMOVE_HEAD(head, field) do { \
217 (head)->slh_first = (head)->slh_first->field.sle_next; \
218} while (0)
219
220#define SLIST_REMOVE(head, elm, type, field) do { \
221 if ((head)->slh_first == (elm)) { \
222 SLIST_REMOVE_HEAD((head), field); \
223 } \
224 else { \
225 struct type *curelm = (head)->slh_first; \
226 while( curelm->field.sle_next != (elm) ) \
227 curelm = curelm->field.sle_next; \
228 curelm->field.sle_next = \
229 curelm->field.sle_next->field.sle_next; \
230 } \
231} while (0)
232
233/*
234 * List definitions.
235 */
236#define LIST_HEAD(name, type) \
237struct name { \
238 struct type *lh_first; /* first element */ \
239}
240
241#define LIST_HEAD_INITIALIZER(head) \
242 { NULL }
243
244#define LIST_ENTRY(type) \
245struct { \
246 struct type *le_next; /* next element */ \
247 struct type **le_prev; /* address of previous next element */ \
248}
249
250/*
251 * List access methods
252 */
253#define LIST_FIRST(head) ((head)->lh_first)
254#define LIST_END(head) NULL
255#define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
256#define LIST_NEXT(elm, field) ((elm)->field.le_next)
257
258#define LIST_FOREACH(var, head, field) \
259 for((var) = LIST_FIRST(head); \
260 (var)!= LIST_END(head); \
261 (var) = LIST_NEXT(var, field))
262
263/*
264 * List functions.
265 */
266#define LIST_INIT(head) do { \
267 LIST_FIRST(head) = LIST_END(head); \
268} while (0)
269
270#define LIST_INSERT_AFTER(listelm, elm, field) do { \
271 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
272 (listelm)->field.le_next->field.le_prev = \
273 &(elm)->field.le_next; \
274 (listelm)->field.le_next = (elm); \
275 (elm)->field.le_prev = &(listelm)->field.le_next; \
276} while (0)
277
278#define LIST_INSERT_BEFORE(listelm, elm, field) do { \
279 (elm)->field.le_prev = (listelm)->field.le_prev; \
280 (elm)->field.le_next = (listelm); \
281 *(listelm)->field.le_prev = (elm); \
282 (listelm)->field.le_prev = &(elm)->field.le_next; \
283} while (0)
284
285#define LIST_INSERT_HEAD(head, elm, field) do { \
286 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
287 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
288 (head)->lh_first = (elm); \
289 (elm)->field.le_prev = &(head)->lh_first; \
290} while (0)
291
292#define LIST_REMOVE(elm, field) do { \
293 if ((elm)->field.le_next != NULL) \
294 (elm)->field.le_next->field.le_prev = \
295 (elm)->field.le_prev; \
296 *(elm)->field.le_prev = (elm)->field.le_next; \
297} while (0)
298
299#define LIST_REPLACE(elm, elm2, field) do { \
300 if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
301 (elm2)->field.le_next->field.le_prev = \
302 &(elm2)->field.le_next; \
303 (elm2)->field.le_prev = (elm)->field.le_prev; \
304 *(elm2)->field.le_prev = (elm2); \
305} while (0)
306
307/*
308 * Simple queue definitions.
309 */
310#define SIMPLEQ_HEAD(name, type) \
311struct name { \
312 struct type *sqh_first; /* first element */ \
313 struct type **sqh_last; /* addr of last next element */ \
314}
315
316#define SIMPLEQ_HEAD_INITIALIZER(head) \
317 { NULL, &(head).sqh_first }
318
319#define SIMPLEQ_ENTRY(type) \
320struct { \
321 struct type *sqe_next; /* next element */ \
322}
323
324/*
325 * Simple queue access methods.
326 */
327#define SIMPLEQ_FIRST(head) ((head)->sqh_first)
328#define SIMPLEQ_END(head) NULL
329#define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
330#define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
331
332#define SIMPLEQ_FOREACH(var, head, field) \
333 for((var) = SIMPLEQ_FIRST(head); \
334 (var) != SIMPLEQ_END(head); \
335 (var) = SIMPLEQ_NEXT(var, field))
336
337/*
338 * Simple queue functions.
339 */
340#define SIMPLEQ_INIT(head) do { \
341 (head)->sqh_first = NULL; \
342 (head)->sqh_last = &(head)->sqh_first; \
343} while (0)
344
345#define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
346 if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
347 (head)->sqh_last = &(elm)->field.sqe_next; \
348 (head)->sqh_first = (elm); \
349} while (0)
350
351#define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
352 (elm)->field.sqe_next = NULL; \
353 *(head)->sqh_last = (elm); \
354 (head)->sqh_last = &(elm)->field.sqe_next; \
355} while (0)
356
357#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
358 if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
359 (head)->sqh_last = &(elm)->field.sqe_next; \
360 (listelm)->field.sqe_next = (elm); \
361} while (0)
362
363#define SIMPLEQ_REMOVE_HEAD(head, elm, field) do { \
364 if (((head)->sqh_first = (elm)->field.sqe_next) == NULL) \
365 (head)->sqh_last = &(head)->sqh_first; \
366} while (0)
367
368/*
369 * Tail queue definitions.
370 */
371#define TAILQ_HEAD(name, type) \
372struct name { \
373 struct type *tqh_first; /* first element */ \
374 struct type **tqh_last; /* addr of last next element */ \
375}
376
377#define TAILQ_HEAD_INITIALIZER(head) \
378 { NULL, &(head).tqh_first }
379
380#define TAILQ_ENTRY(type) \
381struct { \
382 struct type *tqe_next; /* next element */ \
383 struct type **tqe_prev; /* address of previous next element */ \
384}
385
386/*
387 * tail queue access methods
388 */
389#define TAILQ_FIRST(head) ((head)->tqh_first)
390#define TAILQ_END(head) NULL
391#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
392#define TAILQ_LAST(head, headname) \
393 (*(((struct headname *)((head)->tqh_last))->tqh_last))
394/* XXX */
395#define TAILQ_PREV(elm, headname, field) \
396 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
397#define TAILQ_EMPTY(head) \
398 (TAILQ_FIRST(head) == TAILQ_END(head))
399
400#define TAILQ_FOREACH(var, head, field) \
401 for((var) = TAILQ_FIRST(head); \
402 (var) != TAILQ_END(head); \
403 (var) = TAILQ_NEXT(var, field))
404
405#define TAILQ_FOREACH_REVERSE(var, head, field, headname) \
406 for((var) = TAILQ_LAST(head, headname); \
407 (var) != TAILQ_END(head); \
408 (var) = TAILQ_PREV(var, headname, field))
409
410/*
411 * Tail queue functions.
412 */
413#define TAILQ_INIT(head) do { \
414 (head)->tqh_first = NULL; \
415 (head)->tqh_last = &(head)->tqh_first; \
416} while (0)
417
418#define TAILQ_INSERT_HEAD(head, elm, field) do { \
419 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
420 (head)->tqh_first->field.tqe_prev = \
421 &(elm)->field.tqe_next; \
422 else \
423 (head)->tqh_last = &(elm)->field.tqe_next; \
424 (head)->tqh_first = (elm); \
425 (elm)->field.tqe_prev = &(head)->tqh_first; \
426} while (0)
427
428#define TAILQ_INSERT_TAIL(head, elm, field) do { \
429 (elm)->field.tqe_next = NULL; \
430 (elm)->field.tqe_prev = (head)->tqh_last; \
431 *(head)->tqh_last = (elm); \
432 (head)->tqh_last = &(elm)->field.tqe_next; \
433} while (0)
434
435#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
436 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
437 (elm)->field.tqe_next->field.tqe_prev = \
438 &(elm)->field.tqe_next; \
439 else \
440 (head)->tqh_last = &(elm)->field.tqe_next; \
441 (listelm)->field.tqe_next = (elm); \
442 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
443} while (0)
444
445#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
446 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
447 (elm)->field.tqe_next = (listelm); \
448 *(listelm)->field.tqe_prev = (elm); \
449 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
450} while (0)
451
452#define TAILQ_REMOVE(head, elm, field) do { \
453 if (((elm)->field.tqe_next) != NULL) \
454 (elm)->field.tqe_next->field.tqe_prev = \
455 (elm)->field.tqe_prev; \
456 else \
457 (head)->tqh_last = (elm)->field.tqe_prev; \
458 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
459} while (0)
460
461#define TAILQ_REPLACE(head, elm, elm2, field) do { \
462 if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
463 (elm2)->field.tqe_next->field.tqe_prev = \
464 &(elm2)->field.tqe_next; \
465 else \
466 (head)->tqh_last = &(elm2)->field.tqe_next; \
467 (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
468 *(elm2)->field.tqe_prev = (elm2); \
469} while (0)
470
471/*
472 * Circular queue definitions.
473 */
474#define CIRCLEQ_HEAD(name, type) \
475struct name { \
476 struct type *cqh_first; /* first element */ \
477 struct type *cqh_last; /* last element */ \
478}
479
480#define CIRCLEQ_HEAD_INITIALIZER(head) \
481 { CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
482
483#define CIRCLEQ_ENTRY(type) \
484struct { \
485 struct type *cqe_next; /* next element */ \
486 struct type *cqe_prev; /* previous element */ \
487}
488
489/*
490 * Circular queue access methods
491 */
492#define CIRCLEQ_FIRST(head) ((head)->cqh_first)
493#define CIRCLEQ_LAST(head) ((head)->cqh_last)
494#define CIRCLEQ_END(head) ((void *)(head))
495#define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
496#define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
497#define CIRCLEQ_EMPTY(head) \
498 (CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
499
500#define CIRCLEQ_FOREACH(var, head, field) \
501 for((var) = CIRCLEQ_FIRST(head); \
502 (var) != CIRCLEQ_END(head); \
503 (var) = CIRCLEQ_NEXT(var, field))
504
505#define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
506 for((var) = CIRCLEQ_LAST(head); \
507 (var) != CIRCLEQ_END(head); \
508 (var) = CIRCLEQ_PREV(var, field))
509
510/*
511 * Circular queue functions.
512 */
513#define CIRCLEQ_INIT(head) do { \
514 (head)->cqh_first = CIRCLEQ_END(head); \
515 (head)->cqh_last = CIRCLEQ_END(head); \
516} while (0)
517
518#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
519 (elm)->field.cqe_next = (listelm)->field.cqe_next; \
520 (elm)->field.cqe_prev = (listelm); \
521 if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \
522 (head)->cqh_last = (elm); \
523 else \
524 (listelm)->field.cqe_next->field.cqe_prev = (elm); \
525 (listelm)->field.cqe_next = (elm); \
526} while (0)
527
528#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
529 (elm)->field.cqe_next = (listelm); \
530 (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
531 if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \
532 (head)->cqh_first = (elm); \
533 else \
534 (listelm)->field.cqe_prev->field.cqe_next = (elm); \
535 (listelm)->field.cqe_prev = (elm); \
536} while (0)
537
538#define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
539 (elm)->field.cqe_next = (head)->cqh_first; \
540 (elm)->field.cqe_prev = CIRCLEQ_END(head); \
541 if ((head)->cqh_last == CIRCLEQ_END(head)) \
542 (head)->cqh_last = (elm); \
543 else \
544 (head)->cqh_first->field.cqe_prev = (elm); \
545 (head)->cqh_first = (elm); \
546} while (0)
547
548#define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
549 (elm)->field.cqe_next = CIRCLEQ_END(head); \
550 (elm)->field.cqe_prev = (head)->cqh_last; \
551 if ((head)->cqh_first == CIRCLEQ_END(head)) \
552 (head)->cqh_first = (elm); \
553 else \
554 (head)->cqh_last->field.cqe_next = (elm); \
555 (head)->cqh_last = (elm); \
556} while (0)
557
558#define CIRCLEQ_REMOVE(head, elm, field) do { \
559 if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \
560 (head)->cqh_last = (elm)->field.cqe_prev; \
561 else \
562 (elm)->field.cqe_next->field.cqe_prev = \
563 (elm)->field.cqe_prev; \
564 if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \
565 (head)->cqh_first = (elm)->field.cqe_next; \
566 else \
567 (elm)->field.cqe_prev->field.cqe_next = \
568 (elm)->field.cqe_next; \
569} while (0)
570
571#define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
572 if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
573 CIRCLEQ_END(head)) \
574 (head).cqh_last = (elm2); \
575 else \
576 (elm2)->field.cqe_next->field.cqe_prev = (elm2); \
577 if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
578 CIRCLEQ_END(head)) \
579 (head).cqh_first = (elm2); \
580 else \
581 (elm2)->field.cqe_prev->field.cqe_next = (elm2); \
582} while (0)
583
584#endif /* !_FAKE_QUEUE_H_ */
This page took 0.119553 seconds and 5 git commands to generate.