]> andersk Git - gssapi-openssh.git/blame - openssh/moduli.c
Import of OpenSSH 4.6p1
[gssapi-openssh.git] / openssh / moduli.c
CommitLineData
799ae497 1/* $OpenBSD: moduli.c,v 1.20 2007/02/24 03:30:11 ray Exp $ */
0fff78ff 2/*
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Two-step process to generate safe primes for DHGEX
31 *
32 * Sieve candidates for "safe" primes,
33 * suitable for use as Diffie-Hellman moduli;
34 * that is, where q = (p-1)/2 is also prime.
35 *
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
38 */
39
40#include "includes.h"
9108f8d9 41
42#include <sys/types.h>
0fff78ff 43
44#include <openssl/bn.h>
45
9108f8d9 46#include <stdio.h>
47#include <stdlib.h>
48#include <string.h>
49#include <stdarg.h>
50#include <time.h>
51
52#include "xmalloc.h"
53#include "log.h"
54
0fff78ff 55/*
56 * File output defines
57 */
58
59/* need line long enough for largest moduli plus headers */
c9f39d2c 60#define QLINESIZE (100+8192)
0fff78ff 61
62/* Type: decimal.
63 * Specifies the internal structure of the prime modulus.
64 */
c9f39d2c 65#define QTYPE_UNKNOWN (0)
66#define QTYPE_UNSTRUCTURED (1)
67#define QTYPE_SAFE (2)
996d5e62 68#define QTYPE_SCHNORR (3)
c9f39d2c 69#define QTYPE_SOPHIE_GERMAIN (4)
70#define QTYPE_STRONG (5)
0fff78ff 71
72/* Tests: decimal (bit field).
73 * Specifies the methods used in checking for primality.
74 * Usually, more than one test is used.
75 */
c9f39d2c 76#define QTEST_UNTESTED (0x00)
77#define QTEST_COMPOSITE (0x01)
78#define QTEST_SIEVE (0x02)
79#define QTEST_MILLER_RABIN (0x04)
80#define QTEST_JACOBI (0x08)
81#define QTEST_ELLIPTIC (0x10)
0fff78ff 82
cdd66111 83/*
84 * Size: decimal.
0fff78ff 85 * Specifies the number of the most significant bit (0 to M).
cdd66111 86 * WARNING: internally, usually 1 to N.
0fff78ff 87 */
c9f39d2c 88#define QSIZE_MINIMUM (511)
0fff78ff 89
90/*
91 * Prime sieving defines
92 */
93
94/* Constant: assuming 8 bit bytes and 32 bit words */
c9f39d2c 95#define SHIFT_BIT (3)
96#define SHIFT_BYTE (2)
97#define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
98#define SHIFT_MEGABYTE (20)
99#define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
100
101/*
102 * Using virtual memory can cause thrashing. This should be the largest
103 * number that is supported without a large amount of disk activity --
104 * that would increase the run time from hours to days or weeks!
105 */
106#define LARGE_MINIMUM (8UL) /* megabytes */
107
108/*
109 * Do not increase this number beyond the unsigned integer bit size.
110 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
111 */
112#define LARGE_MAXIMUM (127UL) /* megabytes */
0fff78ff 113
114/*
115 * Constant: when used with 32-bit integers, the largest sieve prime
116 * has to be less than 2**32.
117 */
c9f39d2c 118#define SMALL_MAXIMUM (0xffffffffUL)
0fff78ff 119
120/* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
c9f39d2c 121#define TINY_NUMBER (1UL<<16)
0fff78ff 122
123/* Ensure enough bit space for testing 2*q. */
665a873d 124#define TEST_MAXIMUM (1UL<<16)
125#define TEST_MINIMUM (QSIZE_MINIMUM + 1)
126/* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
127#define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
0fff78ff 128
129/* bit operations on 32-bit words */
665a873d 130#define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
131#define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
132#define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
0fff78ff 133
134/*
135 * Prime testing defines
136 */
137
c9f39d2c 138/* Minimum number of primality tests to perform */
665a873d 139#define TRIAL_MINIMUM (4)
c9f39d2c 140
0fff78ff 141/*
142 * Sieving data (XXX - move to struct)
143 */
144
145/* sieve 2**16 */
146static u_int32_t *TinySieve, tinybits;
147
148/* sieve 2**30 in 2**16 parts */
149static u_int32_t *SmallSieve, smallbits, smallbase;
150
151/* sieve relative to the initial value */
152static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
153static u_int32_t largebits, largememory; /* megabytes */
154static BIGNUM *largebase;
155
665a873d 156int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
c9f39d2c 157int prime_test(FILE *, FILE *, u_int32_t, u_int32_t);
0fff78ff 158
159/*
160 * print moduli out in consistent form,
161 */
162static int
163qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
164 u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
165{
166 struct tm *gtm;
167 time_t time_now;
168 int res;
169
170 time(&time_now);
171 gtm = gmtime(&time_now);
cdd66111 172
0fff78ff 173 res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
174 gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
175 gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
176 otype, otests, otries, osize, ogenerator);
177
178 if (res < 0)
179 return (-1);
180
181 if (BN_print_fp(ofile, omodulus) < 1)
182 return (-1);
183
184 res = fprintf(ofile, "\n");
185 fflush(ofile);
186
187 return (res > 0 ? 0 : -1);
188}
189
190
191/*
192 ** Sieve p's and q's with small factors
193 */
194static void
195sieve_large(u_int32_t s)
196{
197 u_int32_t r, u;
198
cdd66111 199 debug3("sieve_large %u", s);
0fff78ff 200 largetries++;
201 /* r = largebase mod s */
202 r = BN_mod_word(largebase, s);
203 if (r == 0)
204 u = 0; /* s divides into largebase exactly */
205 else
206 u = s - r; /* largebase+u is first entry divisible by s */
207
208 if (u < largebits * 2) {
209 /*
210 * The sieve omits p's and q's divisible by 2, so ensure that
211 * largebase+u is odd. Then, step through the sieve in
212 * increments of 2*s
213 */
214 if (u & 0x1)
215 u += s; /* Make largebase+u odd, and u even */
216
217 /* Mark all multiples of 2*s */
218 for (u /= 2; u < largebits; u += s)
219 BIT_SET(LargeSieve, u);
220 }
221
222 /* r = p mod s */
223 r = (2 * r + 1) % s;
224 if (r == 0)
225 u = 0; /* s divides p exactly */
226 else
227 u = s - r; /* p+u is first entry divisible by s */
228
229 if (u < largebits * 4) {
230 /*
231 * The sieve omits p's divisible by 4, so ensure that
232 * largebase+u is not. Then, step through the sieve in
233 * increments of 4*s
234 */
235 while (u & 0x3) {
236 if (SMALL_MAXIMUM - u < s)
237 return;
238 u += s;
239 }
240
241 /* Mark all multiples of 4*s */
242 for (u /= 4; u < largebits; u += s)
243 BIT_SET(LargeSieve, u);
244 }
245}
246
247/*
c9f39d2c 248 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
0fff78ff 249 * to standard output.
250 * The list is checked against small known primes (less than 2**30).
251 */
252int
665a873d 253gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
0fff78ff 254{
255 BIGNUM *q;
256 u_int32_t j, r, s, t;
257 u_int32_t smallwords = TINY_NUMBER >> 6;
258 u_int32_t tinywords = TINY_NUMBER >> 6;
259 time_t time_start, time_stop;
665a873d 260 u_int32_t i;
261 int ret = 0;
0fff78ff 262
263 largememory = memory;
264
c9f39d2c 265 if (memory != 0 &&
665a873d 266 (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
c9f39d2c 267 error("Invalid memory amount (min %ld, max %ld)",
268 LARGE_MINIMUM, LARGE_MAXIMUM);
269 return (-1);
270 }
271
0fff78ff 272 /*
cdd66111 273 * Set power to the length in bits of the prime to be generated.
274 * This is changed to 1 less than the desired safe prime moduli p.
275 */
0fff78ff 276 if (power > TEST_MAXIMUM) {
277 error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
278 return (-1);
279 } else if (power < TEST_MINIMUM) {
280 error("Too few bits: %u < %u", power, TEST_MINIMUM);
281 return (-1);
282 }
283 power--; /* decrement before squaring */
284
285 /*
cdd66111 286 * The density of ordinary primes is on the order of 1/bits, so the
287 * density of safe primes should be about (1/bits)**2. Set test range
288 * to something well above bits**2 to be reasonably sure (but not
289 * guaranteed) of catching at least one safe prime.
0fff78ff 290 */
291 largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
292
293 /*
cdd66111 294 * Need idea of how much memory is available. We don't have to use all
295 * of it.
0fff78ff 296 */
297 if (largememory > LARGE_MAXIMUM) {
298 logit("Limited memory: %u MB; limit %lu MB",
299 largememory, LARGE_MAXIMUM);
300 largememory = LARGE_MAXIMUM;
301 }
302
303 if (largewords <= (largememory << SHIFT_MEGAWORD)) {
304 logit("Increased memory: %u MB; need %u bytes",
305 largememory, (largewords << SHIFT_BYTE));
306 largewords = (largememory << SHIFT_MEGAWORD);
307 } else if (largememory > 0) {
308 logit("Decreased memory: %u MB; want %u bytes",
309 largememory, (largewords << SHIFT_BYTE));
310 largewords = (largememory << SHIFT_MEGAWORD);
311 }
312
9108f8d9 313 TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
0fff78ff 314 tinybits = tinywords << SHIFT_WORD;
315
9108f8d9 316 SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
0fff78ff 317 smallbits = smallwords << SHIFT_WORD;
318
319 /*
320 * dynamically determine available memory
321 */
322 while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
323 largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
324
325 largebits = largewords << SHIFT_WORD;
326 largenumbers = largebits * 2; /* even numbers excluded */
327
328 /* validation check: count the number of primes tried */
329 largetries = 0;
ff7ec503 330 if ((q = BN_new()) == NULL)
331 fatal("BN_new failed");
0fff78ff 332
333 /*
cdd66111 334 * Generate random starting point for subprime search, or use
335 * specified parameter.
0fff78ff 336 */
ff7ec503 337 if ((largebase = BN_new()) == NULL)
338 fatal("BN_new failed");
339 if (start == NULL) {
340 if (BN_rand(largebase, power, 1, 1) == 0)
341 fatal("BN_rand failed");
342 } else {
343 if (BN_copy(largebase, start) == NULL)
344 fatal("BN_copy: failed");
345 }
0fff78ff 346
347 /* ensure odd */
ff7ec503 348 if (BN_set_bit(largebase, 0) == 0)
349 fatal("BN_set_bit: failed");
0fff78ff 350
351 time(&time_start);
352
cdd66111 353 logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
0fff78ff 354 largenumbers, power);
355 debug2("start point: 0x%s", BN_bn2hex(largebase));
356
357 /*
cdd66111 358 * TinySieve
359 */
0fff78ff 360 for (i = 0; i < tinybits; i++) {
361 if (BIT_TEST(TinySieve, i))
362 continue; /* 2*i+3 is composite */
363
364 /* The next tiny prime */
365 t = 2 * i + 3;
366
367 /* Mark all multiples of t */
368 for (j = i + t; j < tinybits; j += t)
369 BIT_SET(TinySieve, j);
370
371 sieve_large(t);
372 }
373
374 /*
cdd66111 375 * Start the small block search at the next possible prime. To avoid
376 * fencepost errors, the last pass is skipped.
377 */
0fff78ff 378 for (smallbase = TINY_NUMBER + 3;
665a873d 379 smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
380 smallbase += TINY_NUMBER) {
0fff78ff 381 for (i = 0; i < tinybits; i++) {
382 if (BIT_TEST(TinySieve, i))
383 continue; /* 2*i+3 is composite */
384
385 /* The next tiny prime */
386 t = 2 * i + 3;
387 r = smallbase % t;
388
389 if (r == 0) {
390 s = 0; /* t divides into smallbase exactly */
391 } else {
392 /* smallbase+s is first entry divisible by t */
393 s = t - r;
394 }
395
396 /*
397 * The sieve omits even numbers, so ensure that
398 * smallbase+s is odd. Then, step through the sieve
399 * in increments of 2*t
400 */
401 if (s & 1)
402 s += t; /* Make smallbase+s odd, and s even */
403
404 /* Mark all multiples of 2*t */
405 for (s /= 2; s < smallbits; s += t)
406 BIT_SET(SmallSieve, s);
407 }
408
409 /*
cdd66111 410 * SmallSieve
411 */
0fff78ff 412 for (i = 0; i < smallbits; i++) {
413 if (BIT_TEST(SmallSieve, i))
414 continue; /* 2*i+smallbase is composite */
415
416 /* The next small prime */
417 sieve_large((2 * i) + smallbase);
418 }
419
420 memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
421 }
422
423 time(&time_stop);
424
425 logit("%.24s Sieved with %u small primes in %ld seconds",
426 ctime(&time_stop), largetries, (long) (time_stop - time_start));
427
428 for (j = r = 0; j < largebits; j++) {
429 if (BIT_TEST(LargeSieve, j))
430 continue; /* Definitely composite, skip */
431
432 debug2("test q = largebase+%u", 2 * j);
ff7ec503 433 if (BN_set_word(q, 2 * j) == 0)
434 fatal("BN_set_word failed");
435 if (BN_add(q, q, largebase) == 0)
436 fatal("BN_add failed");
c9f39d2c 437 if (qfileout(out, QTYPE_SOPHIE_GERMAIN, QTEST_SIEVE,
0fff78ff 438 largetries, (power - 1) /* MSB */, (0), q) == -1) {
439 ret = -1;
440 break;
441 }
442
443 r++; /* count q */
444 }
445
446 time(&time_stop);
447
448 xfree(LargeSieve);
449 xfree(SmallSieve);
450 xfree(TinySieve);
451
452 logit("%.24s Found %u candidates", ctime(&time_stop), r);
453
454 return (ret);
455}
456
457/*
458 * perform a Miller-Rabin primality test
459 * on the list of candidates
460 * (checking both q and p)
461 * The result is a list of so-call "safe" primes
462 */
463int
c9f39d2c 464prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted)
0fff78ff 465{
466 BIGNUM *q, *p, *a;
467 BN_CTX *ctx;
468 char *cp, *lp;
469 u_int32_t count_in = 0, count_out = 0, count_possible = 0;
470 u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
471 time_t time_start, time_stop;
472 int res;
473
c9f39d2c 474 if (trials < TRIAL_MINIMUM) {
475 error("Minimum primality trials is %d", TRIAL_MINIMUM);
476 return (-1);
477 }
478
0fff78ff 479 time(&time_start);
480
ff7ec503 481 if ((p = BN_new()) == NULL)
482 fatal("BN_new failed");
483 if ((q = BN_new()) == NULL)
484 fatal("BN_new failed");
485 if ((ctx = BN_CTX_new()) == NULL)
486 fatal("BN_CTX_new failed");
0fff78ff 487
488 debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
489 ctime(&time_start), trials, generator_wanted);
490
491 res = 0;
492 lp = xmalloc(QLINESIZE + 1);
799ae497 493 while (fgets(lp, QLINESIZE + 1, in) != NULL) {
0fff78ff 494 count_in++;
799ae497 495 if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
0fff78ff 496 debug2("%10u: comment or short line", count_in);
497 continue;
498 }
499
500 /* XXX - fragile parser */
501 /* time */
502 cp = &lp[14]; /* (skip) */
503
504 /* type */
505 in_type = strtoul(cp, &cp, 10);
506
507 /* tests */
508 in_tests = strtoul(cp, &cp, 10);
509
510 if (in_tests & QTEST_COMPOSITE) {
511 debug2("%10u: known composite", count_in);
512 continue;
513 }
cdd66111 514
0fff78ff 515 /* tries */
516 in_tries = strtoul(cp, &cp, 10);
517
518 /* size (most significant bit) */
519 in_size = strtoul(cp, &cp, 10);
520
521 /* generator (hex) */
522 generator_known = strtoul(cp, &cp, 16);
523
524 /* Skip white space */
525 cp += strspn(cp, " ");
526
527 /* modulus (hex) */
528 switch (in_type) {
c9f39d2c 529 case QTYPE_SOPHIE_GERMAIN:
530 debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
0fff78ff 531 a = q;
ff7ec503 532 if (BN_hex2bn(&a, cp) == 0)
533 fatal("BN_hex2bn failed");
0fff78ff 534 /* p = 2*q + 1 */
ff7ec503 535 if (BN_lshift(p, q, 1) == 0)
536 fatal("BN_lshift failed");
537 if (BN_add_word(p, 1) == 0)
538 fatal("BN_add_word failed");
0fff78ff 539 in_size += 1;
540 generator_known = 0;
541 break;
cdd66111 542 case QTYPE_UNSTRUCTURED:
543 case QTYPE_SAFE:
996d5e62 544 case QTYPE_SCHNORR:
cdd66111 545 case QTYPE_STRONG:
546 case QTYPE_UNKNOWN:
0fff78ff 547 debug2("%10u: (%u)", count_in, in_type);
548 a = p;
ff7ec503 549 if (BN_hex2bn(&a, cp) == 0)
550 fatal("BN_hex2bn failed");
0fff78ff 551 /* q = (p-1) / 2 */
ff7ec503 552 if (BN_rshift(q, p, 1) == 0)
553 fatal("BN_rshift failed");
0fff78ff 554 break;
cdd66111 555 default:
556 debug2("Unknown prime type");
557 break;
0fff78ff 558 }
559
560 /*
561 * due to earlier inconsistencies in interpretation, check
562 * the proposed bit size.
563 */
665a873d 564 if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
0fff78ff 565 debug2("%10u: bit size %u mismatch", count_in, in_size);
566 continue;
567 }
568 if (in_size < QSIZE_MINIMUM) {
569 debug2("%10u: bit size %u too short", count_in, in_size);
570 continue;
571 }
572
573 if (in_tests & QTEST_MILLER_RABIN)
574 in_tries += trials;
575 else
576 in_tries = trials;
cdd66111 577
0fff78ff 578 /*
579 * guess unknown generator
580 */
581 if (generator_known == 0) {
582 if (BN_mod_word(p, 24) == 11)
583 generator_known = 2;
584 else if (BN_mod_word(p, 12) == 5)
585 generator_known = 3;
586 else {
587 u_int32_t r = BN_mod_word(p, 10);
588
cdd66111 589 if (r == 3 || r == 7)
0fff78ff 590 generator_known = 5;
0fff78ff 591 }
592 }
593 /*
594 * skip tests when desired generator doesn't match
595 */
596 if (generator_wanted > 0 &&
597 generator_wanted != generator_known) {
598 debug2("%10u: generator %d != %d",
599 count_in, generator_known, generator_wanted);
600 continue;
601 }
602
cdd66111 603 /*
604 * Primes with no known generator are useless for DH, so
605 * skip those.
606 */
607 if (generator_known == 0) {
608 debug2("%10u: no known generator", count_in);
609 continue;
610 }
611
0fff78ff 612 count_possible++;
613
614 /*
cdd66111 615 * The (1/4)^N performance bound on Miller-Rabin is
616 * extremely pessimistic, so don't spend a lot of time
617 * really verifying that q is prime until after we know
618 * that p is also prime. A single pass will weed out the
0fff78ff 619 * vast majority of composite q's.
620 */
621 if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) {
cdd66111 622 debug("%10u: q failed first possible prime test",
0fff78ff 623 count_in);
624 continue;
625 }
cdd66111 626
0fff78ff 627 /*
cdd66111 628 * q is possibly prime, so go ahead and really make sure
629 * that p is prime. If it is, then we can go back and do
630 * the same for q. If p is composite, chances are that
0fff78ff 631 * will show up on the first Rabin-Miller iteration so it
632 * doesn't hurt to specify a high iteration count.
633 */
634 if (!BN_is_prime(p, trials, NULL, ctx, NULL)) {
cdd66111 635 debug("%10u: p is not prime", count_in);
0fff78ff 636 continue;
637 }
638 debug("%10u: p is almost certainly prime", count_in);
639
640 /* recheck q more rigorously */
641 if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) {
642 debug("%10u: q is not prime", count_in);
643 continue;
644 }
645 debug("%10u: q is almost certainly prime", count_in);
646
cdd66111 647 if (qfileout(out, QTYPE_SAFE, (in_tests | QTEST_MILLER_RABIN),
0fff78ff 648 in_tries, in_size, generator_known, p)) {
649 res = -1;
650 break;
651 }
652
653 count_out++;
654 }
655
656 time(&time_stop);
657 xfree(lp);
658 BN_free(p);
659 BN_free(q);
660 BN_CTX_free(ctx);
661
662 logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
cdd66111 663 ctime(&time_stop), count_out, count_possible,
0fff78ff 664 (long) (time_stop - time_start));
665
666 return (res);
667}
This page took 0.169163 seconds and 5 git commands to generate.