]> andersk Git - gssapi-openssh.git/blame - openssh/moduli.c
Import of OpenSSH 4.3p2
[gssapi-openssh.git] / openssh / moduli.c
CommitLineData
665a873d 1/* $OpenBSD: moduli.c,v 1.12 2005/07/17 07:17:55 djm Exp $ */
0fff78ff 2/*
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Two-step process to generate safe primes for DHGEX
31 *
32 * Sieve candidates for "safe" primes,
33 * suitable for use as Diffie-Hellman moduli;
34 * that is, where q = (p-1)/2 is also prime.
35 *
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
38 */
39
40#include "includes.h"
0fff78ff 41#include "xmalloc.h"
42#include "log.h"
43
44#include <openssl/bn.h>
45
0fff78ff 46/*
47 * File output defines
48 */
49
50/* need line long enough for largest moduli plus headers */
c9f39d2c 51#define QLINESIZE (100+8192)
0fff78ff 52
53/* Type: decimal.
54 * Specifies the internal structure of the prime modulus.
55 */
c9f39d2c 56#define QTYPE_UNKNOWN (0)
57#define QTYPE_UNSTRUCTURED (1)
58#define QTYPE_SAFE (2)
996d5e62 59#define QTYPE_SCHNORR (3)
c9f39d2c 60#define QTYPE_SOPHIE_GERMAIN (4)
61#define QTYPE_STRONG (5)
0fff78ff 62
63/* Tests: decimal (bit field).
64 * Specifies the methods used in checking for primality.
65 * Usually, more than one test is used.
66 */
c9f39d2c 67#define QTEST_UNTESTED (0x00)
68#define QTEST_COMPOSITE (0x01)
69#define QTEST_SIEVE (0x02)
70#define QTEST_MILLER_RABIN (0x04)
71#define QTEST_JACOBI (0x08)
72#define QTEST_ELLIPTIC (0x10)
0fff78ff 73
cdd66111 74/*
75 * Size: decimal.
0fff78ff 76 * Specifies the number of the most significant bit (0 to M).
cdd66111 77 * WARNING: internally, usually 1 to N.
0fff78ff 78 */
c9f39d2c 79#define QSIZE_MINIMUM (511)
0fff78ff 80
81/*
82 * Prime sieving defines
83 */
84
85/* Constant: assuming 8 bit bytes and 32 bit words */
c9f39d2c 86#define SHIFT_BIT (3)
87#define SHIFT_BYTE (2)
88#define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
89#define SHIFT_MEGABYTE (20)
90#define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
91
92/*
93 * Using virtual memory can cause thrashing. This should be the largest
94 * number that is supported without a large amount of disk activity --
95 * that would increase the run time from hours to days or weeks!
96 */
97#define LARGE_MINIMUM (8UL) /* megabytes */
98
99/*
100 * Do not increase this number beyond the unsigned integer bit size.
101 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
102 */
103#define LARGE_MAXIMUM (127UL) /* megabytes */
0fff78ff 104
105/*
106 * Constant: when used with 32-bit integers, the largest sieve prime
107 * has to be less than 2**32.
108 */
c9f39d2c 109#define SMALL_MAXIMUM (0xffffffffUL)
0fff78ff 110
111/* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
c9f39d2c 112#define TINY_NUMBER (1UL<<16)
0fff78ff 113
114/* Ensure enough bit space for testing 2*q. */
665a873d 115#define TEST_MAXIMUM (1UL<<16)
116#define TEST_MINIMUM (QSIZE_MINIMUM + 1)
117/* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
118#define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
0fff78ff 119
120/* bit operations on 32-bit words */
665a873d 121#define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
122#define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
123#define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
0fff78ff 124
125/*
126 * Prime testing defines
127 */
128
c9f39d2c 129/* Minimum number of primality tests to perform */
665a873d 130#define TRIAL_MINIMUM (4)
c9f39d2c 131
0fff78ff 132/*
133 * Sieving data (XXX - move to struct)
134 */
135
136/* sieve 2**16 */
137static u_int32_t *TinySieve, tinybits;
138
139/* sieve 2**30 in 2**16 parts */
140static u_int32_t *SmallSieve, smallbits, smallbase;
141
142/* sieve relative to the initial value */
143static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
144static u_int32_t largebits, largememory; /* megabytes */
145static BIGNUM *largebase;
146
665a873d 147int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
c9f39d2c 148int prime_test(FILE *, FILE *, u_int32_t, u_int32_t);
0fff78ff 149
150/*
151 * print moduli out in consistent form,
152 */
153static int
154qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
155 u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
156{
157 struct tm *gtm;
158 time_t time_now;
159 int res;
160
161 time(&time_now);
162 gtm = gmtime(&time_now);
cdd66111 163
0fff78ff 164 res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
165 gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
166 gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
167 otype, otests, otries, osize, ogenerator);
168
169 if (res < 0)
170 return (-1);
171
172 if (BN_print_fp(ofile, omodulus) < 1)
173 return (-1);
174
175 res = fprintf(ofile, "\n");
176 fflush(ofile);
177
178 return (res > 0 ? 0 : -1);
179}
180
181
182/*
183 ** Sieve p's and q's with small factors
184 */
185static void
186sieve_large(u_int32_t s)
187{
188 u_int32_t r, u;
189
cdd66111 190 debug3("sieve_large %u", s);
0fff78ff 191 largetries++;
192 /* r = largebase mod s */
193 r = BN_mod_word(largebase, s);
194 if (r == 0)
195 u = 0; /* s divides into largebase exactly */
196 else
197 u = s - r; /* largebase+u is first entry divisible by s */
198
199 if (u < largebits * 2) {
200 /*
201 * The sieve omits p's and q's divisible by 2, so ensure that
202 * largebase+u is odd. Then, step through the sieve in
203 * increments of 2*s
204 */
205 if (u & 0x1)
206 u += s; /* Make largebase+u odd, and u even */
207
208 /* Mark all multiples of 2*s */
209 for (u /= 2; u < largebits; u += s)
210 BIT_SET(LargeSieve, u);
211 }
212
213 /* r = p mod s */
214 r = (2 * r + 1) % s;
215 if (r == 0)
216 u = 0; /* s divides p exactly */
217 else
218 u = s - r; /* p+u is first entry divisible by s */
219
220 if (u < largebits * 4) {
221 /*
222 * The sieve omits p's divisible by 4, so ensure that
223 * largebase+u is not. Then, step through the sieve in
224 * increments of 4*s
225 */
226 while (u & 0x3) {
227 if (SMALL_MAXIMUM - u < s)
228 return;
229 u += s;
230 }
231
232 /* Mark all multiples of 4*s */
233 for (u /= 4; u < largebits; u += s)
234 BIT_SET(LargeSieve, u);
235 }
236}
237
238/*
c9f39d2c 239 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
0fff78ff 240 * to standard output.
241 * The list is checked against small known primes (less than 2**30).
242 */
243int
665a873d 244gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
0fff78ff 245{
246 BIGNUM *q;
247 u_int32_t j, r, s, t;
248 u_int32_t smallwords = TINY_NUMBER >> 6;
249 u_int32_t tinywords = TINY_NUMBER >> 6;
250 time_t time_start, time_stop;
665a873d 251 u_int32_t i;
252 int ret = 0;
0fff78ff 253
254 largememory = memory;
255
c9f39d2c 256 if (memory != 0 &&
665a873d 257 (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
c9f39d2c 258 error("Invalid memory amount (min %ld, max %ld)",
259 LARGE_MINIMUM, LARGE_MAXIMUM);
260 return (-1);
261 }
262
0fff78ff 263 /*
cdd66111 264 * Set power to the length in bits of the prime to be generated.
265 * This is changed to 1 less than the desired safe prime moduli p.
266 */
0fff78ff 267 if (power > TEST_MAXIMUM) {
268 error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
269 return (-1);
270 } else if (power < TEST_MINIMUM) {
271 error("Too few bits: %u < %u", power, TEST_MINIMUM);
272 return (-1);
273 }
274 power--; /* decrement before squaring */
275
276 /*
cdd66111 277 * The density of ordinary primes is on the order of 1/bits, so the
278 * density of safe primes should be about (1/bits)**2. Set test range
279 * to something well above bits**2 to be reasonably sure (but not
280 * guaranteed) of catching at least one safe prime.
0fff78ff 281 */
282 largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
283
284 /*
cdd66111 285 * Need idea of how much memory is available. We don't have to use all
286 * of it.
0fff78ff 287 */
288 if (largememory > LARGE_MAXIMUM) {
289 logit("Limited memory: %u MB; limit %lu MB",
290 largememory, LARGE_MAXIMUM);
291 largememory = LARGE_MAXIMUM;
292 }
293
294 if (largewords <= (largememory << SHIFT_MEGAWORD)) {
295 logit("Increased memory: %u MB; need %u bytes",
296 largememory, (largewords << SHIFT_BYTE));
297 largewords = (largememory << SHIFT_MEGAWORD);
298 } else if (largememory > 0) {
299 logit("Decreased memory: %u MB; want %u bytes",
300 largememory, (largewords << SHIFT_BYTE));
301 largewords = (largememory << SHIFT_MEGAWORD);
302 }
303
304 TinySieve = calloc(tinywords, sizeof(u_int32_t));
305 if (TinySieve == NULL) {
306 error("Insufficient memory for tiny sieve: need %u bytes",
307 tinywords << SHIFT_BYTE);
308 exit(1);
309 }
310 tinybits = tinywords << SHIFT_WORD;
311
312 SmallSieve = calloc(smallwords, sizeof(u_int32_t));
313 if (SmallSieve == NULL) {
314 error("Insufficient memory for small sieve: need %u bytes",
315 smallwords << SHIFT_BYTE);
316 xfree(TinySieve);
317 exit(1);
318 }
319 smallbits = smallwords << SHIFT_WORD;
320
321 /*
322 * dynamically determine available memory
323 */
324 while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
325 largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
326
327 largebits = largewords << SHIFT_WORD;
328 largenumbers = largebits * 2; /* even numbers excluded */
329
330 /* validation check: count the number of primes tried */
331 largetries = 0;
332 q = BN_new();
333
334 /*
cdd66111 335 * Generate random starting point for subprime search, or use
336 * specified parameter.
0fff78ff 337 */
338 largebase = BN_new();
339 if (start == NULL)
340 BN_rand(largebase, power, 1, 1);
341 else
342 BN_copy(largebase, start);
343
344 /* ensure odd */
345 BN_set_bit(largebase, 0);
346
347 time(&time_start);
348
cdd66111 349 logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
0fff78ff 350 largenumbers, power);
351 debug2("start point: 0x%s", BN_bn2hex(largebase));
352
353 /*
cdd66111 354 * TinySieve
355 */
0fff78ff 356 for (i = 0; i < tinybits; i++) {
357 if (BIT_TEST(TinySieve, i))
358 continue; /* 2*i+3 is composite */
359
360 /* The next tiny prime */
361 t = 2 * i + 3;
362
363 /* Mark all multiples of t */
364 for (j = i + t; j < tinybits; j += t)
365 BIT_SET(TinySieve, j);
366
367 sieve_large(t);
368 }
369
370 /*
cdd66111 371 * Start the small block search at the next possible prime. To avoid
372 * fencepost errors, the last pass is skipped.
373 */
0fff78ff 374 for (smallbase = TINY_NUMBER + 3;
665a873d 375 smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
376 smallbase += TINY_NUMBER) {
0fff78ff 377 for (i = 0; i < tinybits; i++) {
378 if (BIT_TEST(TinySieve, i))
379 continue; /* 2*i+3 is composite */
380
381 /* The next tiny prime */
382 t = 2 * i + 3;
383 r = smallbase % t;
384
385 if (r == 0) {
386 s = 0; /* t divides into smallbase exactly */
387 } else {
388 /* smallbase+s is first entry divisible by t */
389 s = t - r;
390 }
391
392 /*
393 * The sieve omits even numbers, so ensure that
394 * smallbase+s is odd. Then, step through the sieve
395 * in increments of 2*t
396 */
397 if (s & 1)
398 s += t; /* Make smallbase+s odd, and s even */
399
400 /* Mark all multiples of 2*t */
401 for (s /= 2; s < smallbits; s += t)
402 BIT_SET(SmallSieve, s);
403 }
404
405 /*
cdd66111 406 * SmallSieve
407 */
0fff78ff 408 for (i = 0; i < smallbits; i++) {
409 if (BIT_TEST(SmallSieve, i))
410 continue; /* 2*i+smallbase is composite */
411
412 /* The next small prime */
413 sieve_large((2 * i) + smallbase);
414 }
415
416 memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
417 }
418
419 time(&time_stop);
420
421 logit("%.24s Sieved with %u small primes in %ld seconds",
422 ctime(&time_stop), largetries, (long) (time_stop - time_start));
423
424 for (j = r = 0; j < largebits; j++) {
425 if (BIT_TEST(LargeSieve, j))
426 continue; /* Definitely composite, skip */
427
428 debug2("test q = largebase+%u", 2 * j);
429 BN_set_word(q, 2 * j);
430 BN_add(q, q, largebase);
c9f39d2c 431 if (qfileout(out, QTYPE_SOPHIE_GERMAIN, QTEST_SIEVE,
0fff78ff 432 largetries, (power - 1) /* MSB */, (0), q) == -1) {
433 ret = -1;
434 break;
435 }
436
437 r++; /* count q */
438 }
439
440 time(&time_stop);
441
442 xfree(LargeSieve);
443 xfree(SmallSieve);
444 xfree(TinySieve);
445
446 logit("%.24s Found %u candidates", ctime(&time_stop), r);
447
448 return (ret);
449}
450
451/*
452 * perform a Miller-Rabin primality test
453 * on the list of candidates
454 * (checking both q and p)
455 * The result is a list of so-call "safe" primes
456 */
457int
c9f39d2c 458prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted)
0fff78ff 459{
460 BIGNUM *q, *p, *a;
461 BN_CTX *ctx;
462 char *cp, *lp;
463 u_int32_t count_in = 0, count_out = 0, count_possible = 0;
464 u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
465 time_t time_start, time_stop;
466 int res;
467
c9f39d2c 468 if (trials < TRIAL_MINIMUM) {
469 error("Minimum primality trials is %d", TRIAL_MINIMUM);
470 return (-1);
471 }
472
0fff78ff 473 time(&time_start);
474
475 p = BN_new();
476 q = BN_new();
477 ctx = BN_CTX_new();
478
479 debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
480 ctime(&time_start), trials, generator_wanted);
481
482 res = 0;
483 lp = xmalloc(QLINESIZE + 1);
484 while (fgets(lp, QLINESIZE, in) != NULL) {
485 int ll = strlen(lp);
486
487 count_in++;
488 if (ll < 14 || *lp == '!' || *lp == '#') {
489 debug2("%10u: comment or short line", count_in);
490 continue;
491 }
492
493 /* XXX - fragile parser */
494 /* time */
495 cp = &lp[14]; /* (skip) */
496
497 /* type */
498 in_type = strtoul(cp, &cp, 10);
499
500 /* tests */
501 in_tests = strtoul(cp, &cp, 10);
502
503 if (in_tests & QTEST_COMPOSITE) {
504 debug2("%10u: known composite", count_in);
505 continue;
506 }
cdd66111 507
0fff78ff 508 /* tries */
509 in_tries = strtoul(cp, &cp, 10);
510
511 /* size (most significant bit) */
512 in_size = strtoul(cp, &cp, 10);
513
514 /* generator (hex) */
515 generator_known = strtoul(cp, &cp, 16);
516
517 /* Skip white space */
518 cp += strspn(cp, " ");
519
520 /* modulus (hex) */
521 switch (in_type) {
c9f39d2c 522 case QTYPE_SOPHIE_GERMAIN:
523 debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
0fff78ff 524 a = q;
525 BN_hex2bn(&a, cp);
526 /* p = 2*q + 1 */
527 BN_lshift(p, q, 1);
528 BN_add_word(p, 1);
529 in_size += 1;
530 generator_known = 0;
531 break;
cdd66111 532 case QTYPE_UNSTRUCTURED:
533 case QTYPE_SAFE:
996d5e62 534 case QTYPE_SCHNORR:
cdd66111 535 case QTYPE_STRONG:
536 case QTYPE_UNKNOWN:
0fff78ff 537 debug2("%10u: (%u)", count_in, in_type);
538 a = p;
539 BN_hex2bn(&a, cp);
540 /* q = (p-1) / 2 */
541 BN_rshift(q, p, 1);
542 break;
cdd66111 543 default:
544 debug2("Unknown prime type");
545 break;
0fff78ff 546 }
547
548 /*
549 * due to earlier inconsistencies in interpretation, check
550 * the proposed bit size.
551 */
665a873d 552 if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
0fff78ff 553 debug2("%10u: bit size %u mismatch", count_in, in_size);
554 continue;
555 }
556 if (in_size < QSIZE_MINIMUM) {
557 debug2("%10u: bit size %u too short", count_in, in_size);
558 continue;
559 }
560
561 if (in_tests & QTEST_MILLER_RABIN)
562 in_tries += trials;
563 else
564 in_tries = trials;
cdd66111 565
0fff78ff 566 /*
567 * guess unknown generator
568 */
569 if (generator_known == 0) {
570 if (BN_mod_word(p, 24) == 11)
571 generator_known = 2;
572 else if (BN_mod_word(p, 12) == 5)
573 generator_known = 3;
574 else {
575 u_int32_t r = BN_mod_word(p, 10);
576
cdd66111 577 if (r == 3 || r == 7)
0fff78ff 578 generator_known = 5;
0fff78ff 579 }
580 }
581 /*
582 * skip tests when desired generator doesn't match
583 */
584 if (generator_wanted > 0 &&
585 generator_wanted != generator_known) {
586 debug2("%10u: generator %d != %d",
587 count_in, generator_known, generator_wanted);
588 continue;
589 }
590
cdd66111 591 /*
592 * Primes with no known generator are useless for DH, so
593 * skip those.
594 */
595 if (generator_known == 0) {
596 debug2("%10u: no known generator", count_in);
597 continue;
598 }
599
0fff78ff 600 count_possible++;
601
602 /*
cdd66111 603 * The (1/4)^N performance bound on Miller-Rabin is
604 * extremely pessimistic, so don't spend a lot of time
605 * really verifying that q is prime until after we know
606 * that p is also prime. A single pass will weed out the
0fff78ff 607 * vast majority of composite q's.
608 */
609 if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) {
cdd66111 610 debug("%10u: q failed first possible prime test",
0fff78ff 611 count_in);
612 continue;
613 }
cdd66111 614
0fff78ff 615 /*
cdd66111 616 * q is possibly prime, so go ahead and really make sure
617 * that p is prime. If it is, then we can go back and do
618 * the same for q. If p is composite, chances are that
0fff78ff 619 * will show up on the first Rabin-Miller iteration so it
620 * doesn't hurt to specify a high iteration count.
621 */
622 if (!BN_is_prime(p, trials, NULL, ctx, NULL)) {
cdd66111 623 debug("%10u: p is not prime", count_in);
0fff78ff 624 continue;
625 }
626 debug("%10u: p is almost certainly prime", count_in);
627
628 /* recheck q more rigorously */
629 if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) {
630 debug("%10u: q is not prime", count_in);
631 continue;
632 }
633 debug("%10u: q is almost certainly prime", count_in);
634
cdd66111 635 if (qfileout(out, QTYPE_SAFE, (in_tests | QTEST_MILLER_RABIN),
0fff78ff 636 in_tries, in_size, generator_known, p)) {
637 res = -1;
638 break;
639 }
640
641 count_out++;
642 }
643
644 time(&time_stop);
645 xfree(lp);
646 BN_free(p);
647 BN_free(q);
648 BN_CTX_free(ctx);
649
650 logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
cdd66111 651 ctime(&time_stop), count_out, count_possible,
0fff78ff 652 (long) (time_stop - time_start));
653
654 return (res);
655}
This page took 0.520915 seconds and 5 git commands to generate.