/* * ** constraintResolve.c */ /* #define DEBUGPRINT 1 */ # include /* for isdigit */ # include "lclintMacros.nf" # include "basic.h" # include "cgrammar.h" # include "cgrammar_tokens.h" # include "exprChecks.h" # include "exprNodeSList.h" /*@access constraint, exprNode @*/ static constraint inequalitySubstitute (/*@returned@*/ constraint p_c, constraintList p_p); static bool rangeCheck (arithType p_ar1, /*@observer@*/ constraintExpr p_expr1, arithType p_ar2, /*@observer@*/ constraintExpr p_expr2); static constraint inequalitySubstituteUnsound (/*@returned@*/ constraint p_c, constraintList p_p); static constraint inequalitySubstituteStrong (/*@returned@*/ constraint p_c, constraintList p_p); static constraint constraint_searchandreplace (/*@returned@*/ constraint p_c, constraintExpr p_old, constraintExpr p_newExpr); static constraint constraint_addOr (/*@returned@*/ constraint p_orig, /*@observer@*/ constraint p_orConstr); static bool resolveOr (/*@temp@*/constraint p_c, /*@observer@*/ /*@temp@*/ constraintList p_list); static /*@only@*/ constraintList reflectChangesEnsuresFree1 (/*@only@*/ constraintList p_pre2, constraintList p_post1); /*********************************************/ /*@only@*/ constraintList constraintList_mergeEnsuresFreeFirst (constraintList list1, constraintList list2) { constraintList ret; ret = constraintList_mergeEnsures (list1, list2); constraintList_free(list1); return ret; } /*@only@*/ constraintList constraintList_mergeEnsures (constraintList list1, constraintList list2) { constraintList ret; constraintList temp; llassert(constraintList_isDefined(list1) ); llassert(constraintList_isDefined(list2) ); DPRINTF(( message ("constraintList_mergeEnsures: list1 %s list2 %s", constraintList_print(list1), constraintList_print(list2) ))); ret = constraintList_fixConflicts (list1, list2); ret = reflectChangesEnsuresFree1 (ret, list2); temp = constraintList_subsumeEnsures (ret, list2); constraintList_free(ret); ret = temp; temp = constraintList_subsumeEnsures (list2, ret); temp = constraintList_addList (temp, ret); constraintList_free(ret); DPRINTF(( message ("constraintList_mergeEnsures: returning %s ", constraintList_print(temp) ) )); return temp; } /*@only@*/ constraintList constraintList_mergeRequiresFreeFirst (/*@only@*/ constraintList list1, constraintList list2) { constraintList ret; ret = constraintList_mergeRequires(list1, list2); constraintList_free(list1); return ret; } /*@only@*/ constraintList constraintList_mergeRequires (constraintList list1, constraintList list2) { constraintList ret; constraintList temp; DPRINTF((message ("constraintList_mergeRequires: merging %s and %s ", constraintList_print (list1), constraintList_print(list2) ) ) ); /* get constraints in list1 not satified by list2 */ temp = constraintList_reflectChanges(list1, list2); DPRINTF((message ("constraintList_mergeRequires: temp = %s", constraintList_print(temp) ) ) ); /*get constraints in list2 not satified by temp*/ ret = constraintList_reflectChanges(list2, temp); DPRINTF((message ("constraintList_mergeRequires: ret = %s", constraintList_print(ret) ) ) ); ret = constraintList_addListFree (ret, temp); DPRINTF((message ("constraintList_mergeRequires: returning %s", constraintList_print(ret) ) ) ); return ret; } /* old name mergeResolve renamed for czech naming convention */ void exprNode_mergeResolve (exprNode parent, exprNode child1, exprNode child2) { constraintList temp, temp2; DPRINTF( (message ("magically merging constraint into parent:%s for", exprNode_unparse (parent) )) ); DPRINTF( (message (" children: %s and %s", exprNode_unparse (child1), exprNode_unparse(child2) ) ) ); if (exprNode_isError (child1) || exprNode_isError(child2) ) { if (exprNode_isError (child1) && !exprNode_isError(child2) ) { constraintList_free(parent->requiresConstraints); parent->requiresConstraints = constraintList_copy (child2->requiresConstraints); constraintList_free(parent->ensuresConstraints); parent->ensuresConstraints = constraintList_copy (child2->ensuresConstraints); DPRINTF((message ("Copied child constraints: pre: %s and post: %s", constraintList_print( child2->requiresConstraints), constraintList_print (child2->ensuresConstraints) ) )); return; } else { llassert(exprNode_isError(child2) ); return; } } llassert(!exprNode_isError (child1) && ! exprNode_isError(child2) ); DPRINTF( (message ("Child constraints are %s %s and %s %s", constraintList_print (child1->requiresConstraints), constraintList_print (child1->ensuresConstraints), constraintList_print (child2->requiresConstraints), constraintList_print (child2->ensuresConstraints) ) ) ); constraintList_free(parent->requiresConstraints); parent->requiresConstraints = constraintList_copy (child1->requiresConstraints); if ( context_getFlag (FLG_ORCONSTRAINT) ) temp = constraintList_reflectChangesOr (child2->requiresConstraints, child1->ensuresConstraints); else temp = constraintList_reflectChanges(child2->requiresConstraints, child1->ensuresConstraints); temp2 = constraintList_mergeRequires (parent->requiresConstraints, temp); constraintList_free(parent->requiresConstraints); constraintList_free(temp); parent->requiresConstraints = temp2; DPRINTF( (message ("Parent requires constraints are %s ", constraintList_print (parent->requiresConstraints) ) ) ); constraintList_free(parent->ensuresConstraints); parent->ensuresConstraints = constraintList_mergeEnsures(child1->ensuresConstraints, child2->ensuresConstraints); DPRINTF( (message ("Parent constraints are %s and %s ", constraintList_print (parent->requiresConstraints), constraintList_print (parent->ensuresConstraints) ) ) ); } /*@only@*/ constraintList constraintList_subsumeEnsures (constraintList list1, constraintList list2) { constraintList ret; ret = constraintList_makeNew(); constraintList_elements (list1, el) { DPRINTF ((message ("Examining %s", constraint_print (el) ) ) ); if (!constraintList_resolve (el, list2) ) { constraint temp; temp = constraint_copy(el); ret = constraintList_add (ret, temp); } else { DPRINTF ( (message ("Subsuming %s", constraint_print (el) ) ) ); } } end_constraintList_elements; return ret; } /*used to be reflectChangesFreePre renamed for Czech naming conventino*/ /* tries to resolve constraints in list pre2 using post1 */ /*@only@*/ constraintList constraintList_reflectChangesFreePre (/*@only@*/ constraintList pre2, /*@observer@*/ constraintList post1) { constraintList ret; ret = constraintList_reflectChanges(pre2, post1); constraintList_free (pre2); return ret; } /* tries to resolve constraints in list pre2 using post1 */ static /*@only@*/ constraintList reflectChangesNoOr (/*@observer@*/ /*@temp@*/ constraintList pre2, /*@observer@*/ /*@temp@*/ constraintList post1) { constraintList ret; constraint temp; constraint temp2; llassert (! context_getFlag (FLG_ORCONSTRAINT) ); ret = constraintList_makeNew(); DPRINTF((message ("reflectChanges: lists %s and %s", constraintList_print(pre2), constraintList_print(post1) ))); constraintList_elements (pre2, el) { if (!constraintList_resolve (el, post1) ) { temp = constraint_substitute (el, post1); if (!constraintList_resolve (temp, post1) ) { /* try inequality substitution the inequality substitution may cause us to lose information so we don't want to store the result but we do it anyway */ temp2 = constraint_copy (temp); temp2 = inequalitySubstitute (temp2, post1); if (!constraintList_resolve (temp2, post1) ) { temp2 = inequalitySubstituteUnsound (temp2, post1); if (!constraintList_resolve (temp2, post1) ) ret = constraintList_add (ret, temp2); else constraint_free(temp2); } else { constraint_free(temp2); } } constraint_free(temp); } } end_constraintList_elements; DPRINTF((message ("reflectChanges: returning %s", constraintList_print(ret) ) ) ); return ret; } /* tries to resolve constraints in list pre2 using post1 */ /*@only@*/ constraintList constraintList_reflectChanges(/*@observer@*/ constraintList pre2, /*@observer@*/ constraintList post1) { constraintList temp; if ( context_getFlag (FLG_ORCONSTRAINT) ) temp = constraintList_reflectChangesOr (pre2, post1); else temp = reflectChangesNoOr(pre2, post1); return temp; } static constraint constraint_addOr (/*@returned@*/ constraint orig, /*@observer@*/ constraint orConstr) { constraint c; c = orig; DPRINTF((message("constraint_addor: oring %s onto %s", constraint_printOr(orConstr), constraint_printOr(orig) ) )); while (c->or != NULL) { c = c->or; } c->or = constraint_copy(orConstr); DPRINTF((message("constraint_addor: returning %s",constraint_printOr(orig) ) )); return orig; } static bool resolveOr ( /*@temp@*/ constraint c, /*@observer@*/ /*@temp@*/ constraintList list) { constraint temp; int numberOr; numberOr = 0; DPRINTF(( message("resolveOr: constraint %s and list %s", constraint_printOr(c), constraintList_print(list) ) )); temp = c; do { if (constraintList_resolve (temp, list) ) return TRUE; temp = temp->or; numberOr++; llassert(numberOr <= 10); } while (constraint_isDefined(temp)); return FALSE; } /*This is a "helper" function for doResolveOr */ static /*@only@*/ constraint doResolve (/*@only@*/ constraint c, constraintList post1, bool * resolved) { constraint temp; llassert(constraint_isUndefined (c->or ) ); if (!resolveOr (c, post1) ) { temp = constraint_substitute (c, post1); if (!resolveOr (temp, post1) ) { /* try inequality substitution */ constraint temp2; /* the inequality substitution may cause us to lose information so we don't want to store the result but we do anyway */ temp2 = constraint_copy (c); temp2 = inequalitySubstitute (temp2, post1); if (!resolveOr (temp2, post1) ) { constraint temp3; temp3 = constraint_copy(temp2); temp3 = inequalitySubstituteStrong (temp3, post1); if (!resolveOr (temp3, post1) ) { temp2 = inequalitySubstituteUnsound (temp2, post1); if (!resolveOr (temp2, post1) ) { if (!constraint_same (temp, temp2) ) temp = constraint_addOr (temp, temp2); if (!constraint_same (temp, temp3) && !constraint_same (temp3, temp2) ) temp = constraint_addOr (temp, temp3); *resolved = FALSE; constraint_free(temp2); constraint_free(temp3); constraint_free(c); return temp; } constraint_free(temp2); constraint_free(temp3); } else { constraint_free(temp2); constraint_free(temp3); } } else { constraint_free(temp2); } } constraint_free(temp); } constraint_free(c); *resolved = TRUE; return NULL; } static /*@only@*/ constraint doResolveOr (/*@observer@*/ /*@temp@*/ constraint c, constraintList post1, /*@out@*/bool * resolved) { constraint ret; constraint next; constraint curr; DPRINTF(( message("doResolveOr: constraint %s and list %s", constraint_printOr(c), constraintList_print(post1) ) )); *resolved = FALSE; ret = constraint_copy(c); if (constraintList_isEmpty(post1) ) { return ret; } next = ret->or; ret->or = NULL; ret = doResolve (ret, post1, resolved); if (*resolved) { if (next != NULL) constraint_free(next); /*we don't need to free ret when resolved is false because ret is null*/ llassert(ret == NULL); return NULL; } while (next != NULL) { curr = next; next = curr->or; curr->or = NULL; curr = doResolve (curr, post1, resolved); if (*resolved) { /* curr is null so we don't try to free it*/ llassert(curr == NULL); if (next != NULL) constraint_free(next); constraint_free(ret); return NULL; } ret = constraint_addOr (ret, curr); constraint_free(curr); } return ret; } /* tries to resolve constraints in list pr2 using post1 */ /*@only@*/ constraintList constraintList_reflectChangesOr (constraintList pre2, constraintList post1) { bool resolved; constraintList ret; constraint temp; ret = constraintList_makeNew(); DPRINTF((message ("constraintList_reflectChangesOr: lists %s and %s", constraintList_print(pre2), constraintList_print(post1) ))); constraintList_elements (pre2, el) { temp = doResolveOr (el, post1, &resolved); if (!resolved) { ret = constraintList_add(ret, temp); } else { /* we don't need to free temp when resolved is false because temp is null */ llassert(temp == NULL); } } end_constraintList_elements; DPRINTF((message ("constraintList_reflectChangesOr: returning %s", constraintList_print(ret) ) ) ); return ret; } static /*@only@*/ constraintList reflectChangesEnsures (/*@observer@*/ constraintList pre2, constraintList post1) { constraintList ret; constraint temp; ret = constraintList_makeNew(); constraintList_elements (pre2, el) { if (!constraintList_resolve (el, post1) ) { temp = constraint_substitute (el, post1); llassert (temp != NULL); if (!constraintList_resolve (temp, post1) ) ret = constraintList_add (ret, temp); else constraint_free(temp); } else { DPRINTF ( (message ("Resolved away %s ", constraint_print(el) ) ) ); } } end_constraintList_elements; return ret; } static /*@only@*/ constraintList reflectChangesEnsuresFree1 (/*@only@*/ constraintList pre2, constraintList post1) { constraintList ret; ret = reflectChangesEnsures (pre2, post1); constraintList_free(pre2); return ret; } static bool constraint_conflict (constraint c1, constraint c2) { if (constraintExpr_similar(c1->lexpr, c2->lexpr) ) { if (c1->ar == EQ) if (c1->ar == c2->ar) { DPRINTF ( (message ("%s conflicts with %s ", constraint_print (c1), constraint_print(c2) ) ) ); return TRUE; } } /* This is a slight kludg to prevent circular constraints like strlen(str) == maxRead(s) + strlen(str); */ /*@i324234*/ /* clean this up */ if (c1->ar == EQ) if (c1->ar == c2->ar) { if (constraintExpr_search (c1->lexpr, c2->expr) ) if (constraintExpr_isTerm(c1->lexpr) ) { constraintTerm term; term = constraintExpr_getTerm(c1->lexpr); if (constraintTerm_isExprNode(term) ) { DPRINTF ( (message ("%s conflicts with %s ", constraint_print (c1), constraint_print(c2) ) ) ); return TRUE; } } } if (constraint_tooDeep(c1) || constraint_tooDeep(c2) ) { DPRINTF ( (message ("%s conflicts with %s (constraint is too deep", constraint_print (c1), constraint_print(c2) ) ) ); return TRUE; } DPRINTF ( (message ("%s doesn't conflict with %s ", constraint_print (c1), constraint_print(c2) ) ) ); return FALSE; } static void constraint_fixConflict (/*@temp@*/ constraint good, /*@temp@*/ /*@observer@*/ constraint conflicting) /*@modifies good@*/ { if (conflicting->ar ==EQ ) { good->expr = constraintExpr_searchandreplace (good->expr, conflicting->lexpr, conflicting->expr); good = constraint_simplify (good); } } static bool conflict (constraint c, constraintList list) { constraintList_elements (list, el) { if ( constraint_conflict(el, c) ) { constraint_fixConflict (el, c); return TRUE; } } end_constraintList_elements; return FALSE; } /* check if constraint in list1 conflicts with constraints in List2. If so we remove form list1 and change list2. */ constraintList constraintList_fixConflicts (constraintList list1, constraintList list2) { constraintList ret; ret = constraintList_makeNew(); llassert(constraintList_isDefined(list1) ); constraintList_elements (list1, el) { if (! conflict (el, list2) ) { constraint temp; temp = constraint_copy(el); ret = constraintList_add (ret, temp); } } end_constraintList_elements; return ret; } /*returns true if constraint post satifies cosntriant pre */ static bool satifies (constraint pre, constraint post) { if (constraint_isAlwaysTrue (pre) ) return TRUE; if (!constraintExpr_similar (pre->lexpr, post->lexpr) ) { return FALSE; } if (constraintExpr_isUndefined(post->expr)) { llassert(FALSE); return FALSE; } return rangeCheck (pre->ar, pre->expr, post->ar, post->expr); } bool constraintList_resolve (/*@temp@*/ /*@observer@*/ constraint c, /*@temp@*/ /*@observer@*/ constraintList p) { constraintList_elements (p, el) { if ( satifies (c, el) ) { DPRINTF ( (message ("\n%s Satifies %s\n ", constraint_print(el), constraint_print(c) ) ) ); return TRUE; } DPRINTF ( (message ("\n%s does not satify %s\n ", constraint_print(el), constraint_print(c) ) ) ); } end_constraintList_elements; DPRINTF ( (message ("no constraints satify %s", constraint_print(c) ) )); return FALSE; } static bool arithType_canResolve (arithType ar1, arithType ar2) { switch (ar1) { case GTE: case GT: if ( (ar2 == GT) || (ar2 == GTE) || (ar2 == EQ) ) { return TRUE; } break; case EQ: if (ar2 == EQ) return TRUE; break; case LT: case LTE: if ( (ar2 == LT) || (ar2 == LTE) || (ar2 == EQ) ) return TRUE; break; default: return FALSE; } return FALSE; } /* We look for constraint which are tautologies */ bool constraint_isAlwaysTrue (/*@observer@*/ /*@temp@*/ constraint c) { constraintExpr l, r; bool rHasConstant; int rConstant; l = c->lexpr; r = c->expr; DPRINTF(( message("constraint_IsAlwaysTrue:examining %s", constraint_print(c) ) )); if (constraintExpr_canGetValue(l) && constraintExpr_canGetValue(r) ) { int cmp; cmp = constraintExpr_compare (l, r); switch (c->ar) { case EQ: return (cmp == 0); case GT: return (cmp > 0); case GTE: return (cmp >= 0); case LTE: return (cmp <= 0); case LT: return (cmp < 0); default: BADEXIT; /*@notreached@*/ break; } } if (constraintExpr_similar (l,r) ) { switch (c->ar) { case EQ: case GTE: case LTE: return TRUE; case GT: case LT: break; default: BADEXIT; /*@notreached@*/ break; } } l = constraintExpr_copy (c->lexpr); r = constraintExpr_copy (c->expr); r = constraintExpr_propagateConstants (r, &rHasConstant, &rConstant); if (constraintExpr_similar (l,r) && (rHasConstant ) ) { DPRINTF(( message("constraint_IsAlwaysTrue: after removing constants %s and %s are similar", constraintExpr_unparse(l), constraintExpr_unparse(r) ) )); DPRINTF(( message("constraint_IsAlwaysTrue: rconstant is %d", rConstant ) )); constraintExpr_free(l); constraintExpr_free(r); switch (c->ar) { case EQ: return (rConstant == 0); case LT: return (rConstant > 0); case LTE: return (rConstant >= 0); case GTE: return (rConstant <= 0); case GT: return (rConstant < 0); default: BADEXIT; /*@notreached@*/ break; } } else { constraintExpr_free(l); constraintExpr_free(r); DPRINTF(( message("Constraint %s is not always true", constraint_print(c) ) )); return FALSE; } BADEXIT; } static bool rangeCheck (arithType ar1, /*@observer@*/ constraintExpr expr1, arithType ar2, /*@observer@*/ constraintExpr expr2) { DPRINTF ((message ("Doing Range CHECK %s and %s", constraintExpr_unparse(expr1), constraintExpr_unparse(expr2) ) )); if (! arithType_canResolve (ar1, ar2) ) return FALSE; switch (ar1) { case GTE: if (constraintExpr_similar (expr1, expr2) ) return TRUE; /*@fallthrough@*/ case GT: if (! (constraintExpr_canGetValue (expr1) && constraintExpr_canGetValue (expr2) ) ) { constraintExpr e1, e2; bool p1, p2; int const1, const2; e1 = constraintExpr_copy(expr1); e2 = constraintExpr_copy(expr2); e1 = constraintExpr_propagateConstants (e1, &p1, &const1); e2 = constraintExpr_propagateConstants (e2, &p2, &const2); if (p1 || p2) { if (!p1) const1 = 0; if (!p2) const2 = 0; if (const1 <= const2) if (constraintExpr_similar (e1, e2) ) { constraintExpr_free(e1); constraintExpr_free(e2); return TRUE; } } DPRINTF( ("Can't Get value")); constraintExpr_free(e1); constraintExpr_free(e2); return FALSE; } if (constraintExpr_compare (expr2, expr1) >= 0) return TRUE; return FALSE; case EQ: if (constraintExpr_similar (expr1, expr2) ) return TRUE; return FALSE; case LTE: if (constraintExpr_similar (expr1, expr2) ) return TRUE; /*@fallthrough@*/ case LT: if (! (constraintExpr_canGetValue (expr1) && constraintExpr_canGetValue (expr2) ) ) { constraintExpr e1, e2; bool p1, p2; int const1, const2; e1 = constraintExpr_copy(expr1); e2 = constraintExpr_copy(expr2); e1 = constraintExpr_propagateConstants (e1, &p1, &const1); e2 = constraintExpr_propagateConstants (e2, &p2, &const2); if (p1 || p2) { if (!p1) const1 = 0; if (!p2) const2 = 0; if (const1 >= const2) if (constraintExpr_similar (e1, e2) ) { constraintExpr_free(e1); constraintExpr_free(e2); return TRUE; } } constraintExpr_free(e1); constraintExpr_free(e2); DPRINTF( ("Can't Get value")); return FALSE; } if (constraintExpr_compare (expr2, expr1) <= 0) return TRUE; return FALSE; default: llcontbug((message("Unhandled case in switch: %q", arithType_print(ar1) ) ) ); } BADEXIT; } static constraint constraint_searchandreplace (/*@returned@*/ constraint c, constraintExpr old, constraintExpr newExpr) { DPRINTF (("Doing replace for lexpr") ); c->lexpr = constraintExpr_searchandreplace (c->lexpr, old, newExpr); DPRINTF (("Doing replace for expr") ); c->expr = constraintExpr_searchandreplace (c->expr, old, newExpr); return c; } bool constraint_search (constraint c, constraintExpr old) /*@*/ { bool ret; ret = FALSE; ret = constraintExpr_search (c->lexpr, old); ret = ret || constraintExpr_search (c->expr, old); return ret; } /* adjust file locs and stuff */ static constraint constraint_adjust (/*@returned@*/ constraint substitute, /*@observer@*/ constraint old) { fileloc loc1, loc2, loc3; DPRINTF ( (message("Start adjust on %s and %s", constraint_print(substitute), constraint_print(old)) )); loc1 = constraint_getFileloc (old); loc2 = constraintExpr_getFileloc (substitute->lexpr); loc3 = constraintExpr_getFileloc (substitute->expr); /* special case of an equality that "contains itself" */ if (constraintExpr_search (substitute->expr, substitute->lexpr) ) if (fileloc_closer (loc1, loc3, loc2)) { constraintExpr temp; DPRINTF ( (message("Doing adjust on %s", constraint_print(substitute) ) )); temp = substitute->lexpr; substitute->lexpr = substitute->expr; substitute->expr = temp; substitute = constraint_simplify(substitute); } fileloc_free (loc1); fileloc_free (loc2); fileloc_free (loc3); return substitute; } /* If function preforms substitutes based on inequality It uses the rule x >= y && b < y ===> x >= b + 1 Warning this is sound but throws out information */ constraint inequalitySubstitute (/*@returned@*/ constraint c, constraintList p) { if (c->ar != GTE) return c; constraintList_elements (p, el) { if ( (el->ar == LT ) ) /* if (!constraint_conflict (c, el) ) */ /*@i523 explain this! */ { constraintExpr temp2; /*@i22*/ if (constraintExpr_same (el->expr, c->expr) ) { DPRINTF((message ("inequalitySubstitute Replacing %q in %q with %q", constraintExpr_print (c->expr), constraint_print (c), constraintExpr_print (el->expr) ) )); temp2 = constraintExpr_copy (el->lexpr); constraintExpr_free(c->expr); c->expr = constraintExpr_makeIncConstraintExpr (temp2); } } } end_constraintList_elements; c = constraint_simplify(c); return c; } /* drl7x 7/26/001 THis function is like inequalitySubstitute but it adds the rule added the rules x >= y && y <= b ===> x >= b x >= y && y < b ===> x >= b + 1 This is sound but sonce it throws out additional information it should only one used if we're oring constraints. */ static constraint inequalitySubstituteStrong (/*@returned@*/ constraint c, constraintList p) { DPRINTF (( message ("inequalitySubstituteStrong examining substituting for %q", constraint_print(c) ) )); if (c->ar != GTE) return c; DPRINTF (( message ("inequalitySubstituteStrong examining substituting for %q with %q", constraint_print(c), constraintList_print(p) ) )); constraintList_elements (p, el) { DPRINTF (( message ("inequalitySubstituteStrong examining substituting %s on %s", constraint_print(el), constraint_print(c) ) )); if ( (el->ar == LT ) || (el->ar == LTE ) ) /* if (!constraint_conflict (c, el) ) */ /*@i523@*/ { constraintExpr temp2; /*@i22*/ if (constraintExpr_same (el->lexpr, c->expr) ) { DPRINTF((message ("inequalitySubstitute Replacing %s in %s with %s", constraintExpr_print (c->expr), constraint_print (c), constraintExpr_print (el->expr) ) )); temp2 = constraintExpr_copy (el->expr); constraintExpr_free(c->expr); if ( (el->ar == LTE ) ) { c->expr = temp2; } else { c->expr = constraintExpr_makeIncConstraintExpr (temp2); } } } } end_constraintList_elements; c = constraint_simplify(c); return c; } /* This function performs substitutions based on the rule: for a constraint of the form expr1 >= expr2; a < b => a = b -1 for all a in expr1. This will work in most cases. Like inequalitySubstitute we're throwing away some information */ static constraint inequalitySubstituteUnsound (/*@returned@*/ constraint c, constraintList p) { DPRINTF (( message ("Doing inequalitySubstituteUnsound " ) )); if (c->ar != GTE) return c; constraintList_elements (p, el) { DPRINTF (( message ("inequalitySubstituteUnsound examining substituting %s on %s", constraint_print(el), constraint_print(c) ) )); if ( ( el->ar == LTE) || (el->ar == LT) ) /* if (!constraint_conflict (c, el) ) */ /*@i532@*/ { constraintExpr temp2; temp2 = constraintExpr_copy (el->expr); if (el->ar == LT) temp2 = constraintExpr_makeDecConstraintExpr (temp2); DPRINTF((message ("Replacing %s in %s with %s", constraintExpr_print (el->lexpr), constraintExpr_print (c->lexpr), constraintExpr_print (temp2) ) )); c->lexpr = constraintExpr_searchandreplace (c->lexpr, el->lexpr, temp2); constraintExpr_free(temp2); } } end_constraintList_elements; c = constraint_simplify(c); return c; } /*@only@*/ constraint constraint_substitute (/*@observer@*/ /*@temp@*/ constraint c, constraintList p) { constraint ret; ret = constraint_copy(c); constraintList_elements (p, el) { if ( el->ar == EQ) if (!constraint_conflict (ret, el) ) { constraint temp; temp = constraint_copy(el); temp = constraint_adjust(temp, ret); DPRINTF((message ("Substituting %s in the constraint %s", constraint_print (temp), constraint_print (ret) ) ) ); ret = constraint_searchandreplace (ret, temp->lexpr, temp->expr); DPRINTF(( message ("The new constraint is %s", constraint_print (ret) ) )); constraint_free(temp); } } end_constraintList_elements; DPRINTF(( message ("The finial new constraint is %s", constraint_print (ret) ) )); ret = constraint_simplify(ret); return ret; } /*@only@*/ constraintList constraintList_substituteFreeTarget (/*@only@*/ constraintList target, /*@observer@*/ constraintList subList) { constraintList ret; ret = constraintList_substitute (target, subList); constraintList_free(target); return ret; } /* we try to do substitutions on each constraint in target using the constraint in sublist*/ /*@only@*/ constraintList constraintList_substitute (constraintList target,/*2observer@*/ constraintList subList) { constraintList ret; ret = constraintList_makeNew(); constraintList_elements(target, el) { constraint temp; /* drl possible problem : warning make sure that a side effect is not expected */ temp = constraint_substitute(el, subList); ret = constraintList_add (ret, temp); } end_constraintList_elements; return ret; } static constraint constraint_solve (/*@returned@*/ constraint c) { DPRINTF( (message ("Solving %s\n", constraint_print(c) ) ) ); c->expr = constraintExpr_solveBinaryExpr (c->lexpr, c->expr); DPRINTF( (message ("Solved and got %s\n", constraint_print(c) ) ) ); return c; } static arithType flipAr (arithType ar) { switch (ar) { case LT: return GT; case LTE: return GTE; case EQ: return EQ; case GT: return LT; case GTE: return LTE; default: llcontbug (message("unexpected value: case not handled")); } BADEXIT; } static constraint constraint_swapLeftRight (/*@returned@*/ constraint c) { constraintExpr temp; c->ar = flipAr (c->ar); temp = c->lexpr; c->lexpr = c->expr; c->expr = temp; DPRINTF(("Swaped left and right sides of constraint")); return c; } constraint constraint_simplify ( /*@returned@*/ constraint c) { DPRINTF(( message("constraint_simplify on %q ", constraint_print(c) ) )); if (constraint_tooDeep(c)) { DPRINTF(( message("constraint_simplify: constraint to complex aborting %q ", constraint_print(c) ) )); return c; } c->lexpr = constraintExpr_simplify (c->lexpr); c->expr = constraintExpr_simplify (c->expr); if (constraintExpr_isBinaryExpr (c->lexpr) ) { c = constraint_solve (c); c->lexpr = constraintExpr_simplify (c->lexpr); c->expr = constraintExpr_simplify (c->expr); } if (constraintExpr_isLit(c->lexpr) && (!constraintExpr_isLit(c->expr) ) ) { c = constraint_swapLeftRight(c); /*I don't think this will be an infinate loop*/ c = constraint_simplify(c); } DPRINTF(( message("constraint_simplify returning %q ", constraint_print(c) ) )); return c; } /* returns true if fileloc for term1 is closer to file for term2 than term3*/ bool fileloc_closer (fileloc loc1, fileloc loc2, fileloc loc3) { if (!fileloc_isDefined (loc1) ) return FALSE; if (!fileloc_isDefined (loc2) ) return FALSE; if (!fileloc_isDefined (loc3) ) return TRUE; if (fileloc_equal (loc2, loc3) ) return FALSE; if (fileloc_equal (loc1, loc2) ) return TRUE; if (fileloc_equal (loc1, loc3) ) return FALSE; if ( fileloc_lessthan (loc1, loc2) ) { if (fileloc_lessthan (loc2, loc3) ) { llassert (fileloc_lessthan (loc1, loc3) ); return TRUE; } else { return FALSE; } } if ( !fileloc_lessthan (loc1, loc2) ) { if (!fileloc_lessthan (loc2, loc3) ) { llassert (!fileloc_lessthan (loc1, loc3) ); return TRUE; } else { return FALSE; } } llassert(FALSE); return FALSE; }