

 Splint Manual

 Version 3.1.1
 27 April 2003

Secure Programming Group

University of Virginia
Department of Computer Science

Splint Manual

2

Authors
This manual was written by David Evans, except for Section 9 and Appendix B which were
written by David Larochelle and David Evans.

Credits
Splint is developed and maintained by the Secure Programming Group at the University of
Virginia Department of Computer Science. David Evans is the project leader and the primary
developer of Splint. David Larochelle developed the memory bounds checking. University of
Virginia students Chris Barker, David Friedman, Mike Lanouette and Hien Phan all contributed
significantly to the development of Splint.

Splint is the successor to LCLint, a tool originally developed as a joint research project between
the Massachusetts Institute of Technology and Digital Equipment Corporation’s System
Research Center. David Evans was the primary designed and developer of LCLint. John
Guttag and Jim Horning had the original idea for a static checking tool for detecting
inconsistencies between LCL specifications and their C implementations. They provided
valuable advice on its functionality and design and were instrumental in its development.

Splint incorporates the original LCL checker developed by Yang Meng Tan. This was built on
the DECspec Project (Joe Wild, Gary Feldman, Steve Garland, and Bill McKeeman). The LSL
checker used by LCLint was developed by Steve Garland. The original C grammar for LCLint
was provided by Nate Osgood. This work has also benefited greatly from discussions with
Mike Burrows, Stephen Garland, Colin Godfrey, Steve Harrison, Yanlin Huang, Daniel
Jackson, John Knight, David Larochelle, Angelika Leeb, Ulana Legedza, Gary McGraw, Anya
Pogosyants, Avneesh Saxena, Seejo Sebastine, Navneet Singh, Raymie Stata, Yang Meng Tan,
and Mark Vandevoorde. I especially thank Angelika Leeb for many constructive comments on
improving an early version of this document, Raymie Stata and Mark Vandevoorde for
technical assistance, and Dorothy Curtis, Paco Hope, Scott Ruffner, Christina Jackson, David
Ladd, and Jessica Greer for systems assistance.

Much of Splint’s development has been driven by feedback from users in academia and
industry. Many more people than I can mention here have made contributions by suggesting
improvements, reporting bugs, porting early versions of Splint to other platforms. Particularly
heroic contributions have been made by Nelson Beebe, Eric Bloodworth, Jutta Degener, Rick
Farnbach, Chris Flatters, Huver Hu, Alexander Mai, John Gerard Malecki, Thomas G.
McWilliams, Michael Meskes, Richard O’Keefe, Jens Schweikhardt, Albert L. Ting and Jim
Zelenka. Martin “Herbert” Dietze and Mike Smith performed valiantly in producing the
original Win32 and OS2 ports. Tim Van Holder produced the automake and autoconf
distribution.

Splint research at the University of Virginia is currently funded in part by an NSF CAREER
Award and an NSF CCLI Award for using analysis to teach software engineering. Splint has
been previously supported by a grant from NASA and David Larochelle was funded by a
USENIX student research grant.

 UVA Secure Programming Group

3

Contents

1 Operation...11

1.1 Warnings...11
1.2 Flags ...12
1.3 Stylized Comments...12

1.3.1 Annotations ...12
1.3.2 Setting Flags..13

2 Null Dereferences ..14
2.1.1 Predicate Functions ...14
2.1.2 Notnull Annotations ..15
2.1.3 Relaxing Null Checking ..15

3 Undefined Values ..17
3.1.1 Undefined Parameters ...17
3.1.2 Relaxing Checking ..18
3.1.3 Partially Defined Structures ..18

4 Types ..19

4.1 Built in C Types..19
4.1.1 Characters..19
4.1.2 Enumerators ..19
4.1.3 Numeric Types ..19
4.1.4 Arbitrary Integral Types..19

4.2 Boolean Types ..20
4.3 Abstract Types..21

4.3.1 Controlling Access ..22
4.3.2 Mutability ..23
4.3.3 Semi-Abstract Types ...24

4.4 Polymorphism...24

5 Memory Management ..25

5.1 Storage Model ..25
5.2 Deallocation Errors...26

5.2.1 Unshared References...26
5.2.2 Temporary Parameters ..27
5.2.3 Owned and Dependent References..27
5.2.4 Keep Parameters..27
5.2.5 Shared References ...28
5.2.6 Stack References ...28
5.2.7 Inner Storage ...28

5.3 Implicit Memory Annotations ..29
5.4 Reference Counting ..29

6 Sharing...31

Splint Manual

4

6.1 Aliasing...31
6.1.1 Unique Parameters ..31
6.1.2 Returned Parameters..31

6.2 Exposure ...32
6.2.1 Read-Only Storage ..32
6.2.2 Exposed Storage..33

7 Function Interfaces ...35

7.1 Modifications..35
7.1.1 State Modifications ...36
7.1.2 Missing Modifies Clauses ...36

7.2 Global Variables ...37
7.2.1 Controlling Globals Checking...37
7.2.2 Definition State ...38

7.3 Declaration Consistency ...38
7.4 State Clauses...39
7.5 Requires and Ensures Clauses ..41

8 Control Flow..42

8.1 Execution..42
8.2 Undefined Behavior..43
8.3 Problematic Control Structures ..44

8.3.1 Likely Infinite Loops...44
8.3.2 Switches ..45
8.3.3 Deep Breaks ..45
8.3.4 Loop and If Bodies..46
8.3.5 Complete Logic ...46

8.4 Suspicious Statements ..46
8.4.1 Statements with No Effects ...46
8.4.2 Ignored Return Values ..47

9 Buffer Sizes ..48

9.1 Checking Accesses ...48
9.2 Annotating Buffer Sizes ...48
9.3 Less Stringent Checking...49
9.4 Warnings...49

10 Extensible Checking...52

10.1 Defining Attributes ...52
10.2 Annotations...54

11 Macros...55

11.1 Constant Macros ...55
11.2 Function-like Macros ..55

 UVA Secure Programming Group

5

11.2.1 Side Effect Free Parameters...56
11.3 Controlling Macro Checking ..57
11.4 Iterators ...58

11.4.1 Defining Iterators...58
11.4.2 Using Iterators ...58

12 Naming Conventions..60

12.1 Type-Based Naming Conventions ..60
12.1.1 Czech Names ...60
12.1.2 Slovak Names ..61
12.1.3 Czechoslovak Names...61

12.2 Namespace Prefixes ..61
12.3 Naming Restrictions..63

12.3.1 Reserved Names ..63
12.3.2 Distinct Names...63

13 Completeness ..65

13.1 Unused Declarations ...65
13.2 Complete Programs...65

13.2.1 Unnecessarily External Names ..65
13.2.2 Declarations Missing from Headers ..65

14 Libraries and Header File Inclusion...66

14.1 Standard Libraries...66
14.1.1 ISO Standard Library...66
14.1.2 POSIX Library...66
14.1.3 UNIX Library ..66
14.1.4 Strict Libraries ...66

14.2 Generating Libraries ...67
14.2.1 Generating the Standard Libraries ...67

14.3 Header File Inclusion..67
14.3.1 Preprocessing Constants ..68

Appendix A Availability ...69

Appendix B Flags ..70

Key ..70
Flag Name Abbreviations ...70

Global Flags ..71
Help...71
Initialization ..71
Pre-processor...72
Libraries ..72
Output ...73
Expected Errors...74

Message Format ..74

Splint Manual

6

Mode Selector Flags..75
Checking Flags..76

Null Dereferences (Section 2)...76
Use Before Definition (Section 3) ..76
Declarations ..77
Types (Section 4) ..77
Memory Management (Section 5) ..81
Sharing (Section 6) ...84
Function Interfaces (Section 7) ...85
Macros (Section 11)..87
Iterators ...88
Naming Conventions (Section 12)..88
Control Flow (Section 8) ..92
Extensible Checking (Section 13)...95
Completeness (Section 13)..95

Appendix C Annotations ..101
Suppressing Warnings ..101

Syntactic Annotations ...101
Functions...101
Iterators (Section 11.4)..102
Constants (Section 11.1) ...102
Alternate Types (Section 4.4) ...102
Declarator Annotations ...102
Type Access ..102
Macro Expansion ..106
Arbitrary Integral Types ...106
Traditional Lint Comments...106

Metastate Definitions ..107

Appendix D Specifications..108
Specification Flags..108

Appendix E Annotated Bibliography..111

Index...115

Figures

Figure 1. Typical Effort-Benefit Curve..10
Figure 2. Null Checking...14
Figure 3. Use before Definition ...18
Figure 4. Boolean Checking...21
Figure 5. Information Hiding Violations ...22
Figure 6. Memory Management...27
Figure 7. Stack-Allocated Storage ...28
Figure 8. Implicit Annotations ...29

 UVA Secure Programming Group

7

Figure 9. Reference Counting ..30
Figure 10. Unique parameters ..31
Figure 11. Exposure ...34
Figure 12. Modification ...36
Figure 13. Global Variables ...37
Figure 14. Annotated Globals Lists ...38
Figure 15. State Clauses...40
Figure 16. Evaluation Order...43
Figure 17. Infinite Loops ...44
Figure 18. Switch Cases...45
Figure 19. Statements with No Effect ..47
Figure 20. Ignored Return Values..47
Figure 21. Memory Bounds ...51
Figure 22. Taintedness Attribute..53
Figure 23. Prefix Character Codes ...63
Figure 24. Distinct Names ...64
Figure 25. Flag Name Abbreviations ...70

 UVA Secure Programming Group

9

Splint User’s Manual

Version 3.1.1
27 April 2003

Splint1 is a tool for statically checking C programs for security vulnerabilities and programming
mistakes. Splint does many of the traditional lint checks including unused declarations, type
inconsistencies, use before definition, unreachable code, ignored return values, execution paths
with no return, likely infinite loops, and fall through cases. More powerful checks are made
possible by additional information given in source code annotations. Annotations are stylized
comments that document assumptions about functions, variables, parameters and types. In
addition to the checks specifically enabled by annotations, many of the traditional lint checks are
improved by exploiting this additional information.

As more effort is put into annotating programs, better checking results. A representational effort-
benefit curve for using Splint is shown in Figure 1. Splint is designed to be flexible and allow
programmers to select appropriate points on the effort-benefit curve for particular projects. As
different checks are turned on and more information is given in code annotations the number of
bugs that can be detected increases dramatically.

Problems detected by Splint include:

• Dereferencing a possibly null pointer (Section 2);
• Using possibly undefined storage or returning storage that is not properly defined (Section 3);
• Type mismatches, with greater precision and flexibility than provided by C compilers (Section

4.1–4.2);
• Violations of information hiding (Section 4.3);
• Memory management errors including uses of dangling references and memory leaks (Section

5);
• Dangerous aliasing (Section 6);
• Modifications and global variable uses that are inconsistent with specified interfaces (Section

7);
• Problematic control flow such as likely infinite loops (Section 8.3.1), fall through cases or

incomplete switches (Section 8.3.2), and suspicious statements (Section 8.4);
• Buffer overflow vulnerabilities (Section 9);
• Dangerous macro implementations or invocations (Section 11); and
• Violations of customized naming conventions. (Section 12).

1 Lint is a common programming tool for detecting anomalies in C programs. S. C. Johnson developed the
original lint in the late seventies, mainly because early versions of C did not support function prototypes.
Splint was originally named LCLint because it was originally intended to check for inconsistencies
between LCL specifications and C implementations. To reflect divergence from LCL and increased focus
on detecting security vulnerabilities, the name was changed to Splint, short for “Specification Lint” and
“Secure Programming Lint”.

Since human
beings

themselves are
not fully

debugged yet,
there will be
bugs in your

code no
matter what

you do.
Chris Mason,
Zero-defects

memo
(quoted in
Microsoft

Secrets,
Cusumano
and Selby)

Splint Manual

10

T ypic al C
C om pilers

W eak C hecking

S tricter
T ype-C heck ing A bstrac t T yp es

D efin ition
A nnota tion s N ull A nno tations

C hecked M acros
M em o ry M anagem en t

A lias ing
F unction In terfaces

B uffer s ize s

Form a l V e rification
Tools

A m oun t o f E ffort R equired

Fr
ac

tio
n

of
 E

rro
rs

 D
et

ec
te

d

E x tensib le C heck ing

Figure 1. Typical Effort-Benefit Curve

Splint checking can be customized to select what classes of errors are reported using command
line flags and stylized comments in the code. In addition, users can define new annotations and
associated checks to extend Splint’s checking or to enforce application specific properties
(Section 10).

About This Document
This document is a guide to using Splint. Section 1 explains how to run Splint, interpret
messages and control checking. Sections 2–13 describe particular checks done by Splint. There
are some minor dependencies between sections, but in general they can be read in any order.
Section 14 covers issues involving libraries and header file inclusion important for running Splint
on large systems.

This document does not describe technical details of the checking. For technical background and
analysis of Splint’s effectiveness in practice, see the papers available at http://www.splint.org.

 UVA Secure Programming Group

11

1 Operation
Splint is invoked by listing files to be checked. Initialization files, command line flags, and
stylized comments may be used to customize checking globally and locally.

The best way to learn to use Splint, of course, is to actually use it (if you don’t already have
Splint installed on your system, see Appendix A). Before you read much further in this
document, I recommend finding a small C program. Then, try running:

splint *.c

For the most C programs, this will produce a large number of warnings. To turn off reporting for
some of the warnings, try:

splint -weak *.c

The -weak flag is a mode flag that sets many checking parameters to select weaker checking than
is done in the default mode. Other Splint flags will be introduced in the following sections; a
complete list is given in Appendix B.

1.1 Warnings
A typical warning message is:

sample.c: (in function faucet)
sample.c:11:12: Fresh storage x not released before return
 A memory leak has been detected. Storage allocated locally is not released
 before the last reference to it is lost. (Use -mustfreefresh to inhibit
 warning)
 sample.c:5:47: Fresh storage x allocated

The first line gives the name of the function in which the error is found. This is printed before the
first message reported for a function. The second line is the text of the message. This message
reports a memory leak—storage allocated in a function is not deallocated before the function
returns. The file name, line and column number where the error is located precedes the text.

The next line is a hint giving more information about the suspected error, including information
on how the warning message may be suppressed. For this message, using the -mustfreefresh flag
would prevent this warning from being reported. This flag can be set at the command line, or
more precisely just around the code point in question by using annotations (see Section 1.3.2).

The final line of the message gives additional location information. For this message, it tells
where the leaking storage was allocated.

The generic message format is (parts enclosed in square brackets are optional):
 [<file>:<line> (in <context>)]
 <file>:<line>[,<column>]: message
 [hint]
 <file>:<line>,<column>: extra location information, if appropriate

Users can customize the format and content of messages printed by Splint. The function context
is not printed if -showfunc is used. Column numbers are not printed if -showcol is used. The
+parenfileformat flag can be used to generate file locations in the format recognized by Microsoft
Visual Studio. If +parenfileformat is set, the line number follows the file name in parentheses
(e.g., sample.c(11).) Messages are split into lines of length less than the value set using -linelen

Splint Manual

12

<number>. The default line length is 80 characters. Splint attempts to split lines in a sensible
place as near to the line length limit as possible.

The -hints prevents any hints from being printed. Normally, a hint is given only the first time a
class of error is reported. To have Splint print a hint for every message regardless, use
+forcehints.

1.2 Flags
So that many programming styles can be supported, Splint provides several hundred flags for
controlling checking and message reporting. Some of the flags are introduced in the body of this
document. Appendix B describes every flag. Modes and shortcut flags are provided for setting
many flags at once. Individual flags can override the mode settings.

Flags are preceded by + or -. When a flag is preceded by + we say it is on; when it is preceded
by - it is off. The precise meaning of on and off depends on the type of flag.

The +/- flag settings are used for consistency and clarity, but contradict standard UNIX usage and
it is easy to accidentally use the wrong one. To reduce the likelihood of using the wrong flag,
Splint issues warnings when a flag is set in an unusual way. Warnings are issued when a flag is
redundantly set to the value it already had (these errors are not reported if the flag is set using a
stylized comment), if a mode flag or special flag is set after a more specific flag that will be set by
the general flag was already set, if value flags are given unreasonable values, of if flags are set in
an inconsistent way. The -warnflags flag suppresses these warnings.

Default flag settings will be read from ~/.splintrc if it is readable. If there is a .splintrc file in the
working directory, settings in this file will be read next and its settings will override those in
~/.splintrc. Command-line flags override settings in either file. The syntax of the .splintrc file is
the same as that of command-line flags, except that flags may be on separate lines and the #
character may be used to indicate that the remainder of the line is a comment. The -nof flag
prevents the ~/.splintrc file from being loaded. The -f <filename> flag loads options from
filename.

To make flag names more readable, hyphens (-), underscores (_) and spaces in flags at the
command line are ignored. Hence, warnflags, warn-flags and warn_flags all select the warnflags
option.

1.3 Stylized Comments
Stylized comments are used to provide extra information about a type, variable or function
interface to improve checking, or to control flag settings locally.

All stylized comments begin with /*@ and are closed by the end of the comment. The role of the
@ may be played by any printable character. Use -commentchar <char> to select a different
stylized comment marker.

1.3.1 Annotations
Annotations are stylized comments that follow a definite syntax. Although they are comments,
they may only be used in fixed grammatical contexts (e.g., like a type qualifier).

 UVA Secure Programming Group

13

Sections 2–6 describe annotations for expressing assumptions about variables, parameters, return
values, structure fields and type definitions. For example, /*@null@*/ is used to express an
assumption that a parameter may be NULL. Section 7 describes annotations for describing
function interfaces. Other annotations are described in later sections and Section 10 describes
mechanisms users can employ to define new annotations. A summary of annotations is found in
Appendix C.

Some annotations, known as control comments, may appear between any two tokens in a C
program (unlike regular C comments, control comments should not be used within a single token
as they introduce new separators in the code). Syntactically, they are no different from standard
comments. Control comments are used to provide source-level control of Splint checking. They
may be used to suppress spurious messages, set flags, and control checking locally in other ways.

1.3.2 Setting Flags
Most flags (all except those characterized as “global” in Appendix B) can be set locally using
control comments. A control comment can set flags locally to override the command line
settings. The original flag settings are restored before processing the next file. The syntax for
setting flags in control comments is the same as that of the command line, except that flags may
also be preceded by = to restore their setting to the original command-line value. For instance,

/*@+charint -modifies =showfunc@*/

sets charint on (this makes char and int indistinguishable types), sets modifies off (this prevents
reporting of modification errors), and sets showfunc to its original setting (this controls whether
or not the name of a function is displayed before a message).

Splint Manual

14

2 Null Dereferences
A common cause of program failures is when a null pointer is dereferenced. Splint detects these
errors by distinguishing possibly NULL pointers at interface boundaries.

The null annotation is used to indicate that a pointer value may be NULL. A pointer declared with
no null annotation, may not be NULL. If null checking is turned on (controlled by null), Splint
will report an error when a possibly null pointer is passed as a parameter, returned as a result, or
assigned to an external reference with no null qualifier.

If a pointer is declared with the null annotation, the code must check that it is not NULL on all
paths leading to a dereference of the pointer (or the pointer being returned or passed as a value
with no null annotation). Dereferences of possibly null pointers may be protected by conditional
statements or assertions (to see how assert is declared see Section 8.1) that check the pointer is
not NULL.

Consider two implementations of firstChar in Figure 2. For firstChar1, Splint reports an error
since the pointer that is dereferenced is declared with a null annotation. For firstChar2, no error is
reported since the true branch of the s == NULL if statement returns, so the dereference of s is
only reached if s is not NULL.

2.1.1 Predicate Functions
Another way to protect null dereference, is to declare a function using nullwhentrue or
falsewhennull (these annotations where originally falsenull and truenull, but were renamed to
clarify the logical asymmetry; falsenull and truenull may still be used) and call the function in a
conditional statement before the null-annotated pointer is dereferenced.

If a function annotated with nullwhentrue returns true it means its first passed parameter is NULL.
If it returns false, the parameter is not NULL. Note that it may return true for a parameter that is
not NULL. A more descriptive name for nullwhentrue would be “if the result is false, the

null.c Running Splint

char firstChar1 (/*@null@*/ char *s)
{
3 return *s;
}

char firstChar2 (/*@null@*/ char *s)
{
 if (s == NULL) return ‘\0’;
9 return *s;
}

> splint null.c
Splint 3.0.1

null.c: (in function firstChar1)
null.c:3:11: Dereference of possibly null pointer s: *s
 null.c:1:35: Storage s may become null

Finished checking --- 1 code warning found

Figure 2. Null Checking

Output from running Splint is displayed in sans-serif font. The command line is preceded
by >, the rest is output from Splint. Explanations added to the code or splint output are
shown in italics. Code shown in the figures in this document is available from the splint
web site, http://www.splint.org. No error is reported for line 9, since the dereference is
reached only if s is non-null. For most of the figures, the options -linelen 55 -hints –
showcol were used to produce condensed output, and –exportlocal to inhibit warnings
about exported declarations.

 UVA Secure Programming Group

15

parameter was not null”. For example, if isNull is declared as,
 /*@nullwhentrue@*/ bool isNull (/*@null@*/ char *x);

we could write firstChar2:
 char firstChar2 (/*@null@*/ char *s)
 {

if (isNull (s)) return '\0';
return *s;

 }

No error is reported since the dereference of s is only reached if isNull(s) is false, and since isNull
is declared with the nullwhentrue annotation this means s must not be null.

The falsewhennull annotation is not quite the logical opposite of nullwhentrue. If a function
declared with falsewhennull returns true, it means its parameter is definitely not NULL. If it
returns false, the parameter may or may not be NULL. That is a falsewhennull always returns
false when passed a NULL parameter; it may sometimes return false when passed a non-NULL
parameter.

For example, we could define isNonEmpty to return true if its parameter is not NULL and has least
one character before the NUL terminator:
 /*@falsewhennull@*/ bool isNonEmpty (/*@null@*/ char *x)
 {
 return (x != NULL && *x != ‘\0’);
 }

Splint does not check that the implementation of a function declared with nullwhentrue or
falsewhennull is consistent with its annotation, but assumes the annotation is correct when code
that calls the function is checked.

2.1.2 Notnull Annotations
The notnull annotation specifies that a declarator is definitely not NULL. By default, this is
assumed, but it may be necessary to use notnull to override a null in a type definition. The null
annotation may be used in a type definition to indicate that all instances of the type may be NULL.
For declarations of a type declared using null, the null annotation in the type definition may be
overridden with notnull. This is particularly useful for parameters to hidden static operations of
abstract types (see Section 4.3) where the null test has already been done before the function is
called, or function results known to never be NULL. For an abstract type, notnull may not be used
for parameters to external functions, since clients should not be aware of when the concrete
representation may by NULL. Parameters to static functions in the implementation module,
however, may be declared using notnull, since they may only be called from places where the
representation is accessible. Return values for static or external functions may be declared using
notnull.

2.1.3 Relaxing Null Checking
An additional annotation, relnull may be used to relax null checking. No error is reported when a
relnull value is dereferenced, or when a possibly null value is assigned to an identifier declared
using relnull.

This is generally used for structure fields that may or may not be null depending on some other
constraint. Splint does not report and error when NULL is assigned to a relnull reference, or when

Splint Manual

16

a relnull reference is dereferenced. It is up to the programmer to ensure that this constraint is
satisfied before the pointer is dereferenced.

 UVA Secure Programming Group

17

3 Undefined Values
Like many static checkers, Splint detects instances where the value of a location is used before it
is defined. This analysis is done at the procedural level. If there is a path through the procedure
that uses a local variable before it is defined, a use before definition error is reported. The usedef
flag controls use before definition checking.

Splint can do more checking than standard checkers though, because the annotations can be used
to describe what storage must be defined and what storage may be undefined at interface points.
Unannotated references are expected to be completely defined at interface points. This means all
storage reachable from a global variable, parameter to a function, or function return value is
defined before and after a function call.

3.1.1 Undefined Parameters
Sometimes, function parameters or return values are expected to reference undefined or partially
defined storage. For example, a pointer parameter may be intended only as an address to store a
result, or a memory allocator may return allocated but undefined storage. The out annotation
denotes a pointer to storage that may be undefined.

Splint does not report an error when a pointer to allocated but undefined storage is passed as an
out parameter. Within the body of a function, Splint will assume an out parameter is allocated
but not necessarily bound to a value, so an error is reported if its value is used before it is defined.

Splint reports an error if storage reachable by the caller after the call is not defined when the
function returns. This can be suppressed by -must-define. After a call returns, an actual
parameter corresponding to an out parameter is assumed to be completely defined.

When checking unannotated programs, many spurious use before definition errors may be
reported If impouts is on, no error is reported when an incompletely-defined parameter is passed
to a formal parameter with no definition annotation, and the actual parameter is assumed to be
defined after the call. The /*@in@*/ annotation can be used to denote a parameter that must be
completely defined, even if imp-outs is on. If imp-outs is off, there is an implicit in annotation on
every parameter with no definition annotation.

Splint Manual

18

3.1.2 Relaxing Checking
The reldef annotation relaxes definition checking for a particular declaration. Storage declared
with a reldef annotation is assumed to be defined when it is used, but no error is reported if it is
not defined before it is returned or passed as a parameter.

It is up to the programmer to check reldef fields are used correctly. They should be avoided in
most cases, but may be useful for fields of structures that may or may not be defined depending
on other constraints.

3.1.3 Partially Defined Structures
The partial annotation can be used to relax checking of structure fields. A structure with
undefined fields may be passed as a partial parameter or returned as a partial result. Inside a
function body, no error is reported when the field of a partial structure is used. After a call, all
fields of a structure that is passed as a partial parameter are assumed to be completely defined.

usedef.c Running Splint
extern void
 setVal (/*@out@*/ int *x);
extern int
 getVal (/*@in@*/ int *x);
extern int mysteryVal
 (int *x);

int dumbfunc
 (/*@out@*/ int *x, int i)
{
 if (i > 3)
11 return *x;
 else if (i > 1)
13 return getVal (x);
 else if (i == 0)
15 return mysteryVal (x);
 else
 {
18 setVal (x);
19 return *x;
 }
}

> splint usedef.c
usedef.c:11: Value *x used before definition
usedef.c:13: Passed storage x not completely
defined
 (*x is undefined): getVal (x)
usedef.c:15: Passed storage x not completely
defined
 (*x is undefined): mysteryVal (x)

Finished checking --- 3 code warnings

No error is reported for line 18, since the
incompletely defined storage x is passed as an
out parameter. After the call, x may be
dereferenced, since setVal is assumed to
completely define its out parameter. The
warning for line 15 would not appear if
+impouts were used since there is no in
annotation on the parameter to mysteryVal.

Figure 3. Use before Definition

 UVA Secure Programming Group

19

4 Types
Strong type checking often reveals programming errors. Splint can check primitive C types more
strictly and flexibly than typical compilers (4.1) and provides support a Boolean type (4.2). In
addition, users can define abstract types that provide information hiding (0).

4.1 Built in C Types
Splint supports stricter checking of built in C types. The char and enum types can be checked as
distinct types, and the different numeric types can be type-checked strictly.

4.1.1 Characters
The primitive char type can be type-checked as a distinct type. If char is used as a distinct type,
common errors involving assigning ints to chars are detected.

The +charint flag can be used for checking legacy programs where char and int are used
interchangeably. If charint is on, char types indistinguishable from ints. To keep char and int as
distinct types, but allow chars to be used to index arrays, use +charindex.

4.1.2 Enumerators
Standard C treats user-declared enum types just like integers. An arbitrary integral value may be
assigned to an enum type, whether or not it was listed as an enumerator member. Splint checks
each user-defined enum type as distinct type. An error is reported if a value that is not an
enumerator member is assigned to the enum type, or if an enum type is used as an operand to an
arithmetic operator. If the enumint flag is on, enum and int types may be used interchangeably.
Like charindex, if the enumindex flag is on, enum types may be used to index arrays.

4.1.3 Numeric Types
Splint reports where numeric types are used in dangerous or inconsistent ways. With the strictest
checking, Splint will report an error anytime numeric types do not match exactly. If the relax-
quals flag is on, only those inconsistencies that may corrupt values are reported. For example, if
an int is assigned to a variable of type long (or passed as a long formal parameter), Splint will not
report an error if relax-quals is on since a long must have at least enough bits to store an int
without data loss. On the other hand, an error would be reported if the long were assigned to an
int, since the int type may not have enough bits to store the long value.

Similarly, if a signed value is assigned to an unsigned, Splint will report an error since an
unsigned type cannot represent all signed values correctly. If the +ignore-signs flag is on,
checking is relaxed to ignore all sign qualifiers in type comparisons (this is not recommended,
since it will suppress reporting of real bugs, but may be necessary for quickly checking certain
legacy code).

4.1.4 Arbitrary Integral Types
Some types are declared to be integral types, but the concrete type may be implementation
dependent. For example, the standard library declares the types size_t, ptr_diff and wchar_t, but
does not constrain their types other than limiting them to integral types. Programs may rely on
them being integral types (e.g., can use + operator on two size_t operands), but should not rely on
a particular representation (e.g., long unsigned).

Two types have
compatible
type if their
types are the
same.

ANSI C,
3.1.2.6.

Splint Manual

20

Splint supports three different kinds of arbitrary integral types:

/*@integraltype@*/

An arbitrary integral type. The actual type may be any one of short, int, long, unsigned
short, unsigned, or unsigned long.

/*@unsignedintegraltype@*/
An arbitrary unsigned integral type. The actual type may be any one of unsigned short,
unsigned, or unsigned long.

/*@signedintegraltype@*/
An arbitrary signed integral type. The actual type may be any one of short, int, or long.

Splint reports an error if the code depends on the actual representation of a type declared as an
arbitrary integral. The match-any-integral flag relaxes checking and allows an arbitrary integral
type is allowed to match any integral type.

Other flags set the arbitrary integral types to a concrete type. These should only be used if
portability to platforms that may use different representations is not important. The long-integral
and long-unsigned-integral flags set the type corresponding to /*@integraltype@*/ to be unsigned
long and long respectively. The long-unsigned-unsigned-integral flag sets the type corresponding
to /*@unsignedintegraltype@*/ to be unsigned long. The long-signed-integral flag sets the type
corresponding to /*@signedintegraltype@*/ to be long.

4.2 Boolean Types
Pre-ISO99 C had no Boolean representation – the result of a comparison operator was an integer,
and no type checking is done for test expressions. C99 introduced a Boolean type (_Bool and
bool, true and false macros in stdbool.h), but did not strengthen the type checking. Splint
supports a Boolean type that can be checked distinctly from integral types. Many common errors
can be detected by introducing a distinct Boolean type and stronger type checking.

Splint checks that the test expression in an if, while, or for statement or an operand of a &&, || or !
operator is a Boolean. If the type of a test expression is not a Boolean, Splint will produce a
warning depending on the type of the test expression and flag settings. If the test expression has
pointer type, the warning is inhibited by –predboolptr (this can be used to prevent messages for
the idiom of testing if a pointer is not null without a comparison). If it is type int, the warnings is
inhibited by -pred-bool-int. For all other types, Splint warns unless -pred-bool-others is set.
Relations, comparisons and certain standard library functions are declared to return Booleans.

Since using = instead of == is such a common bug, reporting of test expressions that are
assignments is controlled by the separate pred-assign flag. The message can be suppressed by
adding extra parentheses around the test expression.

Use the –booltype <name> flag to select the type name is used to represent Boolean values.
There is no default Boolean type, although bool is used by convention. The names TRUE and
FALSE are assumed to represent true and false Boolean values. To change the names of true and
false, use -booltrue and -boolfalse. (The Splint distribution includes an implementation of bool, in
lib/bool.h. However, it isn’t necessary to use this implementation to get the benefits of Boolean
checking.)

Figure 4 illustrates some of the Boolean checking done by Splint.

 UVA Secure Programming Group

21

4.3 Abstract Types
Information hiding is a technique for handling complexity. By hiding implementation details,
programs can be understood and developed in distinct modules and the effects of a change can be
localized. One technique for information hiding is data abstraction. An abstract type is used to
represent some natural program abstraction. It provides functions for manipulating instances of
the type. The module that implements these functions is called the implementation module. We
call the functions that are part of the implementation of an abstract type the operations of the
type. Other modules that use the abstract type are called clients.

Clients may use the type name and operations, but should not manipulate or rely on the actual
representation of the type. Only the implementation module may manipulate the representation
of an abstract type. This hides information, since implementers and maintainers of client modules
should not need to know anything about how the abstract type is implemented. It provides
modularity, since the representation of an abstract type can be changed without having to change
any client code.

Splint supports abstract types by detecting places where client code depends on the concrete
representation of an abstract type. Some examples of abstraction violations detected by Splint are
shown in Figure 5.

To declare an abstract type, the abstract annotation is added to a typedef. For example (in
mstring.h),

typedef /*@abstract@*/ char *mstring;

declares mstring as an abstract type. It is implemented using a char *, but clients of the type
should not depend on or need to be aware of this. If it later becomes apparent that a better
representation such as a string table should be used, we should be able to change the
implementation of mstring without having to change or inspect any client code.

In a client module, abstract types are checked by name, not structure. Splint reports an error if an
instance of mstring is passed as a char * (for instance, as an argument to strlen), since the

bool.c Running Splint
include "bool.h"
int f (int i, char *s,
 bool b1, bool b2)
{
 6 if (i = 3)
 7 return b1;
 8 if (!i || s)
 9 return i;
10 if (s)
11 return 7;
12 if (b1 == b2)
13 return 3;
14 return 2;
}

> splint bool.c +predboolptr –booltype bool

bool.c:6: Test expression for if is assignment expression: i = 3
bool.c:6: Test expression for if not bool, type int: i = 3
bool.c:7: Return value type bool does not match declared type int:
b1
bool.c:8: Operand of ! is non-boolean (int): !i
bool.c:8: Right operand of || is non-boolean (char *): !i || s
bool.c:10: Test expression for if not bool, type char *: s
bool.c:12: Use of == with bool variables (risks inconsistency
because
 of multiple true values): b1 == b2

Finished checking --- 7 code warnings found

Figure 4. Boolean Checking

Traditionally,
programming
books wax
mathematical
when they
arrive at the
topic of
abstract data
types… Such
books make it
seem as if
you’d never
actually use an
abstract data
type except as
a sleep aid.

 Steve
 McConnell

Splint Manual

22

correctness of this call depends on the representation of the abstract type. Splint also reports
errors if any C operator except assignment (=) or sizeof is used on an abstract type. The
assignment operator is allowed since its semantics do not depend on the representation of the type
(for abstract types whose instances can change value, a client does need to know if assignment
has copy or sharing semantics as discussed in Section 4.3.2). The use of sizeof is also permitted,
since this is the only way for clients to allocate pointers to the abstract type. Type casting objects
to or from abstract types in a client module is an abstraction violation and will generate a warning
message.

Normally, Splint will assume a type definition is not abstract unless the /*@abstract@*/ qualifier
is used. If instead you want all user-defined types to be abstract types unless they are marked as
concrete, the +imp-abstract flag can be used. This adds an implicit abstract annotation to any
typedef that is not marked with /*@concrete@*/.

4.3.1 Controlling Access
Where code may manipulate the representation of an abstract type, we say the code has access to
that type. If code has access to an abstract type, the representation of the type and the abstract
type are indistinguishable. Usually, a single program module that is the only code that has access
to the type representation implements an abstract type. Sometimes, more complicated access
control is desired if the implementation of an abstract type is split across program files, or
particular client code needs to access the representation.

There are a several ways of selecting what code has access the representation of an abstract type:

• Modules. An abstract type defined in M.h is accessible in M.c. Controlled by the
accessmodule flag. This means when accessmodule is on, as it is by default, the module
access rule is in effect. If accessmodule is off (when -access-module is used), the module
access rule is not in effect and an abstract type defined in M.h is not necessarily accessible in
M.c.

palindrome.c Running Splint
include "bool.h"
include "mstring.h"

bool isPalindrome (mstring s)
{
 6 char *current = (char *) s;
 7 int i, len = (int) strlen (s);

 for (i = 0; i <= (len+1) / 2; i++)
 {
11 if (current[i] != s[len-i-1])
 return FALSE;
 }
 return TRUE;
}

bool callPal (void)
{
19 return (isPalindrome ("bob"));
}

> splint palindrome.c

palindrome.c:6: Cast from underlying
 abstract type mstring: (char *)s
palindrome.c:7: Function strlen expects arg
 1 to be char * gets mstring: s
palindrome.c:11: Array fetch from non-array
 (mstring): s[len - i - 1]
palindrome.c:19: Function isPalindrome
 expects arg 1 to be mstring gets char *:
 "bob"

Finished checking --- 4 code warnings

Figure 5. Information Hiding Violations

 UVA Secure Programming Group

23

• File names. An abstract type named type is accessible in files named type.<extension>. For
example, the representation of mstring is accessible in mstring.h and mstring.c. Controlled by
the access-file flag.

• Function names. An abstract type named type may be accessible in a function named
type_name or typeName. For example, mstring_length and mstringLength would have access
to the mstring abstract type. Controlled by accessfunction and the naming convention (see
Section 12).

• Access control comments. The syntax /*@access type,+@*/2 allows the following code to
access the representation of type. Similarly, /*@noaccess type,+@*/ restricts access to the
representation of type. The type in a noaccess comment must have been declared as an
abstract type.

4.3.2 Mutability
We can view types as being mutable or immutable. A type is mutable if passing it as a parameter
to a function call can change the value of an instance of the type. For example, the primitive type
int is immutable. If i is a local variable of type int and no variables point to the location where i is
stored, the value of i must be the same before and after the call f (i). Structure and union types are
also immutable, since they are copied when they are passed as arguments. On the other hand,
pointer types are mutable. If x is a local variable of type int *, the value of *x (and hence, the
value of the object x) can be changed by the function call g(x).

The mutability of a concrete type is determined by its type definition. For abstract types,
mutability does not depend on the type representation but on what operations the type provides. If
an abstract type has operations that may change the value of instances of the type, the type is
mutable. If not, it is immutable. The value of an instance of an immutable type never changes.
Since object sharing is noticeable only for mutable types, they are checked differently from
immutable types.

The /*@mutable@*/ and /*@immutable@*/ annotations are used to declare an abstract type as
mutable or immutable. (If neither is used, the abstract type is assumed to be mutable.) For
example,
 typedef /*@abstract@*/ /*@mutable@*/ char *mstring;
 typedef /*@abstract@*/ /*@immutable@*/ int weekDay;

declares mstring as a mutable abstract type and weekDay as an immutable abstract type.

Clients of a mutable abstract type need to know the semantics of assignment. After the
assignment expression s = t, do s and t refer to the same object (that is, will changes to the value
of s also change the value of t).

Splint prescribes that all abstract types have sharing semantics, so s and t would indeed be the
same object. Splint will produce a warning if a mutable type is implemented with a
representation (e.g., a struct) that does not provide sharing semantics (controlled by mutrep flag).

The mutability of an abstract type is not necessarily the same as the mutability of its
representation. We could use the immutable concrete type int to represent mutable strings using

2 The meta-notation, item,+ is used to denote a comma separated list of items. For example,
 /*@access mstring, intSet@*/
allows access to the representations of both mstring and intSet.)

Splint Manual

24

an index into a string table, or declare mstring as immutable as long as no operations are provided
that modify the value of an mstring.

4.3.3 Semi-Abstract Types
Sometimes it is useful to have a type that is abstract in some ways, but can be used with the
standard numerical operators. Splint supports numabstract types for this purpose. The
/*@numabstract@*/ annotation denotes a numabstract type. Splint will report warnings when
numabstract types are used inconsistently, but allow binary numeric operators to operate on two
values of the same numabstract type.

Several flags control the strictness of type checking for numabstract types: numabstract,
numabstractcast, numabstractlit, numabstractindex, and numabstractprint.

4.4 Polymorphism
In C, all declarators must be declared to have exactly one type. This makes it impossible to write
functions that operate on more than one type of parameter – for example, we cannot use the same
square function for ints and floats. Because of the stricter type checking made possible by Splint,
it is often useful to declare a parameter that has more than one possible type.

Splint provides alternate types to indicate that a declaration may be one of several possible types.
The /*@alt type,+@*/ annotation creates a union type. For example, int /*@alt char, unsigned
char@*/ c declares c such that either an int, char or unsigned char value may be assigned to it
without warning.

One use of alternate types is to specify the type of a macro that operates on multiple types of
operands (see Section 11.2.1). Alternate types are also useful for declaring functions for which
the return value may be safely ignored (see Section 8.4.2). A function can be declared to return t
/*@alt void@*/ to indicate that it returns a value of type t, but there should be not warning if that
value is ignored.

 UVA Secure Programming Group

25

5 Memory Management
About half the bugs in typical C programs can be attributed to memory management problems.
Memory management bugs are notoriously difficult to detect through traditional techniques.
Often, the symptom of the bug is far removed from its actual source. Memory management bugs
often only appear sporadically and some bugs may only be apparent when compiler optimizations
are turned on or the code is compiled on a different platform. Run-time tools offer some help, but
are cumbersome to use and limited to detecting errors that occur when test cases are run. By
detecting these errors statically, we can be confident that certain types of errors will never occur
and provide verified documentation on the memory management behavior of a program.

Splint can detect many memory management errors at compile time including using storage that
may have been deallocated (Section 5.2), memory leaks (Section 5.2), or returning a pointer to
stack-allocated storage (Section 5.2.6).

Most of these checks depend on annotations added to programs to document assumptions related
to memory management and pointer values. By documenting these assumptions for function
interfaces, variables, type definitions and structure fields, memory management bugs can be
detected at their source — where an assumption is violated. In addition, precise documentation
about memory management decisions makes it easier to change code.

5.1 Storage Model
This section describes execution-time concepts for describing the state of storage more precisely
than can be done using standard C terminology. Certain uses of storage are likely to indicate
program bugs, and are reported as anomalies.3

Splint assumes a CLU-like object storage model.4 An object is a typed region of storage. Some
objects use a fixed amount of storage that is allocated and deallocated automatically by the
compiler. Other objects use dynamic storage that must be managed by the program.

Storage is undefined if it has not been assigned a value, and defined after it has been assigned a
value. An object is completely defined if all storage that may be reached from it is defined. What
storage is reachable from an object depends on the type and value of the object. For example, if p
is a pointer to a structure, p is completely defined if the value of p is NULL, or if every field of the
structure p points to is completely defined.

When an expression is used as the left side of an assignment expression we say it is used as an
lvalue. Its location in memory is used, but not its value. Undefined storage may be used as an
lvalue since only its location is needed. When storage is used in any other way, such as on the
right side of an assignment, as an operand to a primitive operator (including the indirection
operator, *),5 or as a function parameter, we say it is used as an rvalue. It is an anomaly to use
undefined storage as an rvalue.

3 This section is largely based on [Evans96]. It semi-formally defines some of the terms needed to describe
memory management checking; if you are satisfied with an intuitive understanding of these terms, this
section may be skipped.
4 This is similar to the LISP storage model, except that objects are typed.
5 Except sizeof, which does not need the value of its argument.

Yea, from the
table of my
memory I'll
wipe away all
trivial fond
records, all
saws of books,
all forms, all
pressures
past, that
youth and
observation
copied there.

Hamlet
prefers

 garbage
 collection

(Shakespeare,
 Hamlet.

Act I,
 Scene v)

Splint Manual

26

A pointer is a typed memory address. A pointer is either live or dead. A live pointer is either
NULL or an address within allocated storage. A pointer that points to an object is an object
pointer. A pointer that points inside an object (e.g., to the third element of an allocated block) is
an offset pointer. A pointer that points to allocated storage that is not defined is an allocated
pointer. The result of dereferencing an allocated pointer is undefined storage. Hence, it is an
anomaly to use it as an rvalue. A dead (or “dangling”) pointer does not point to allocated storage.
A pointer becomes dead if the storage it points to is deallocated (e.g., the pointer is passed to the
free library function.) It is an anomaly to use a dead pointer as an rvalue.

There is a special object null corresponding to the NULL pointer in a C program. A pointer that
may have the value NULL is a possibly-null pointer. It is an anomaly to use a possibly-null
pointer where a non-null pointer is expected (e.g., certain function arguments or the indirection
operator).

5.2 Deallocation Errors
There are two kinds of deallocation errors with which we are concerned: deallocating storage
when there are other live references to the same storage, or failing to deallocate storage before the
last reference to it is lost. To handle these deallocation errors, we introduce a concept of an
obligation to release storage. Every time storage is allocated, it creates an obligation to release
the storage. This obligation is attached to the reference to which the storage is assigned.6 Before
the scope of the reference is exited or it is assigned to a new value, the storage to which it points
must be released. Annotations can be used to indicate that this obligation is transferred through a
return value, function parameter or assignment to an external reference.

5.2.1 Unshared References
The only annotation is used to indicate a reference is the only pointer to the object it points to.
We can view the reference as having an obligation to release this storage. This obligation is
satisfied by transferring it to some other reference in one of three ways:
• pass it as an actual parameter corresponding to a formal parameter declared with an only

annotation
• assign it to an external reference declared with an only annotation
• return it as a result declared with an only annotation

After the release obligation is transferred, the original reference is a dead pointer and the storage
it points to may not be used.

All obligations to release storage stem from primitive allocation routines (e.g., malloc), and are
ultimately satisfied by calls to free. The standard library declared the primitive allocation and
deallocation routines.

The basic memory allocator, malloc, is declared:

/*@only@*/ /*@null@*/ void *malloc (size_t size);

It returns an object that is referenced only by the function return value.

The deallocator, free, is declared:7

6 If the storage is not assigned to a reference, an internal reference is created to track the storage.
7 The declaration of free has a null annotation on the parameter to indicate that the argument may be
NULL. According to [ISO, 7.20.3.2], NULL may be passed to free without no action. On some UNIX

‘Tis in my
memory
lock’d, and
you yourself
shall keep the
key of it.

Ophelia
prefers

 explicit
deallocation

(Hamlet.
Act I,

 Scene iii)

 UVA Secure Programming Group

27

void free (/*@only@*/ /*@out@*/ /*@null@*/ void *ptr);

The parameter to free must reference an unshared object. Since the parameter is declared using
only, the caller may not use the referenced object after the call, and may not pass in a reference to
a shared object. There is nothing special about malloc and free — their behavior can be described
entirely in terms of the provided annotations.

5.2.2 Temporary Parameters
The temp annotation is used to declare a function parameter that is used temporarily by the
function. An error is reported if the function releases the storage associated with a temp formal
parameter or creates new aliases to it that are visible after the function returns. Any storage may
be passed as a temp parameter, and it satisfies its original memory constraints after the function
returns.

5.2.3 Owned and Dependent References
In real programs it is sometimes necessary to have storage that is shared between several possibly
references. The owned and dependent annotations provide a more flexible way of managing
storage, at the cost of less checking. The owned annotation denotes a reference with an
obligation to release storage. Unlike only, however, other external references marked with
dependent annotations may share this object. It is up to the programmer to ensure that the
lifetime of a dependent reference is contained within the lifetime of the corresponding owned
reference.

5.2.4 Keep Parameters
The keep annotation is similar to only, except the caller may use the reference after the call. The
called function must assign the keep parameter to an only reference, or pass it as a keep parameter
to another function. It is up to the programmer to make sure that the calling function does not use

platforms, passing NULL to free causes a program crash so the UNIX version of the standard library
specifies free without the null annotation on its parameter. To check that allocated objects are completely
destroyed (e.g., all unshared objects inside a structure are deallocated before the structure is deallocated),
Splint checks that any parameter passed as an out only void * does not contain references to live, unshared
objects. This makes sense, since such a parameter could not be used sensibly in any way other than
deallocating its storage.

only.c Running Splint
1 extern /*@only@*/ int *glob;

/*@only@*/ int *
f (/*@only@*/ int *x, int *y,
 int *z)
 /*@globals glob;@*/
{
 8 int *m = (int *)
 9 malloc (sizeof (int));

11 glob = y; Memory leak
12 free (x);
13 *m = *x; Use after free
14 return z; Memory leak detected
}

> splint only.c
only.c:11: Only storage glob (type int *) not released
 before assignment: glob = y
 only.c:1: Storage glob becomes only
only.c:11: Implicitly temp storage y assigned to only:
 glob = y
only.c:13: Dereference of possibly null pointer m: *m
 only.c:8: Storage m may become null
only.c:13: Variable x used after being released
 only.c:12: Storage x released
only.c:14: Implicitly temp storage z returned as only: z
only.c:14: Fresh storage m not released before return
 only.c:9: Fresh storage m allocated

Figure 6. Memory Management

Splint Manual

28

this reference after it is released. The keep annotation is useful for adding an object to a
collection (e.g., a symbol table), where it is known that it will not be deallocated until the
collection is.

5.2.5 Shared References
If Splint is used to check a program designed to be used in a garbage-collected environment, there
may be storage that is shared by one or more references and never explicitly released. The shared
annotation declares storage that may be shared arbitrarily, but never released.

5.2.6 Stack References
Local variables that are not allocated dynamically are stored on a call stack. When a function
returns, its stack frame is deallocated, destroying the storage associated with the function’s local
variables. A memory error occurs if a pointer into this storage is live after the function returns.
Splint detects errors involving stack references exported from a function through return values or
assignments to references reachable from global variables or actual parameters. No annotations
are needed to detect stack reference errors, since it is clear from a declaration if storage is
allocated on the function stack. Figure 7 gives and example of errors reported involving stack-
allocated storage.

5.2.7 Inner Storage
An annotation always applies to the outermost level of storage. For example,

/*@only@*/ int **x;

declares x as an unshared pointer to a pointer to an int. The only annotation applies to x, but not
to *x. To apply annotations to inner storage a type definition may be used:
 typedef /*@only@*/ int *oip;
 /*@only@*/ oip *x;

Now, x is an only pointer to an oip, which is an only pointer to an int.

When annotations are used in type definitions, they may be overridden in instance declarations.
For example,

/*@dependent@*/ oip x;

stack.c Running Splint
int *glob;

/*@dependent@*/ int *
 f (int **x)
{
 int sa[2] = { 0, 1 };
 int loc = 3;

 9 glob = &loc;
10 *x = &sa[0];

12 return &loc;
}

> splint stack.c
stack.c:12: Stack-allocated storage &loc reachable
 from return value: &loc
stack.c:12: Stack-allocated storage *x reachable from
 parameter x
 stack.c:10: Storage *x becomes stack
stack.c:12: Stack-allocated storage glob reachable
 from global glob
 stack.c:9: Storage glob becomes stack

A dependent annotation is used on the return value.
Without this, other warnings would be reported, since
the result would have an implicit only annotation.

Figure 7. Stack-Allocated Storage

 UVA Secure Programming Group

29

makes x a dependent pointer to an int. Another way to apply annotations to inner storage is to
use a state clause (see Section 7.4).

5.3 Implicit Memory Annotations
Since it is important that Splint can check unannotated programs effectively, the meaning of
declarations with no memory annotations is chosen to minimize the number of annotations
needed to get useful checking on an unannotated program.

An implicit memory management annotation may be assumed for declarations with no explicit
memory management annotation. Implicit annotations are checked identically to the
corresponding explicit annotation, except error messages indicate that they result from an implicit
annotation. Figure 8 illustrates some implicit annotations.

Unannotated function parameters are assumed to be temp. This means if memory checking is
turned on for an unannotated program, all functions that release storage referenced by a parameter
or assign a global variable to alias the storage will produce error messages. (Controlled by
paramimptemp.)

Unannotated return values, structure fields and global variables are assumed to be only. With
implicit annotations (on by default), turning on memory checking for an unannotated program
will produce errors for any function that does not return unshared storage or assignment of shared
storage to a global variable or structure field. If an exposure qualifier is used (see Section 6.2),
the implied dependent annotation is used instead of the more generally implied only annotation.
(Controlled by retimponly, structimponly and globimponly. The allimponly flag sets all of the
implicit only flags.)

5.4 Reference Counting
Another approach to memory management is to add a field to a type to explicitly keep track of the
number of references to that storage. Every time a reference is added or lost the reference count
is adjusted accordingly; if it would become zero, the storage is released. Reference counting it
difficult to do without automatic checking since it is easy to forget to increment or decrement the
reference count, and exceedingly difficult to track down these errors.

implicit.c
typedef struct {
 only char *name;
 int val;
} *rec;

extern only rec rec_last ;

extern only rec
 rec_create (temp char *name,
 int val) ;
Annotations in italics are not present in
the code, but may be implied depending on
flag settings.

Implicit only annotation on mutable structure
field if structimponly is on.

Implicit only annotation on mutable global
variables if globimponly is on.

Implicit only annotation on mutable function
result if retimponly is set. Implicit temp
annotation on mutable parameter if
paramimptemp is set.

Figure 8. Implicit Annotations

Splint Manual

30

Splint supports reference counting by using annotations to constrain the use of reference counted
storage in a manner similar to other memory management annotations. A reference counted type
is declared using the refcounted annotation. Only pointer to struct types may be declared as
refcounted, since reference counted storage must have a field to count the references. One field
in the structure (or integral type) is preceded by the refs annotation to indicate that the value of
this field is the number of live references to the structure. For example (in rstring.h),
 typedef /*@abstract@*/ /*@refcounted@*/ struct {
 /*@refs@*/ int refs;
 char *contents;
 } *rstring;

declares rstring as an abstract, reference-counted type. The refs field counts the number of
references and the contents field holds the contents of a string.

All functions that return refcounted storage must increase the reference count before returning.
Splint cannot determine if the reference count was increased, so any function that directly returns
a reference to refcounted storage will produce an error. This is avoided, by using a function to
return a new reference (e.g., rstring_ref in Figure 9).

A reference counted type may be passed as a temp or dependent parameter. It may not be passed
as an only parameter. Instead, the killref annotation is used to denote a parameter whose reference
is eliminated by the function call. Like only parameters, an actual parameter corresponding to a
killref formal parameter may not be used in the calling function after the call. Splint checks that
the implementation of a function releases all killref parameters, either by passing them as killref
parameters, or assigning or returning them without increasing the reference count.

rstring.c Running Splint
include "rstring.h"

static rstring rstring_ref (rstring r)
{
 r->refs++;
6 return r;
}

rstring rstring_first (rstring r1, rstring r2)
{
 if (strcmp (r1->contents, r2->contents) < 0)
12 return r1;
 else
14 return rstring_ref (r2);
}

> splint rstring.c
rstring.c:12: Reference counted
 storage returned without modifying
 reference count: r1

No error is reported for line 6 since
the reference count was
incremented. No error is reported
for line 14, since rstring_ref returns
a new reference.

Figure 9. Reference Counting

 UVA Secure Programming Group

31

6 Sharing
Errors involving unexpected sharing of storage can cause serious problems. Undocumented
sharing may lead to unpredictable modifications, and some library calls (e.g., strcpy) have
undefined behavior if parameters share storage. Another class of sharing errors occurs when
clients of an abstract type may obtain a reference to mutable storage that is part of the abstract
representation. This exposes the representation of the abstract type, since clients may modify an
instance of the abstract type indirectly through this shared storage.

6.1 Aliasing
Splint detects errors involving dangerous aliasing of parameters. Some of these errors are already
detected through the standard memory annotations (e.g., only parameters may not be aliases.)
Two additional annotations are provided for constraining aliasing of parameters and return
values.

6.1.1 Unique Parameters
The unique annotation denotes a parameter that may not be aliased by any other storage reachable
from the function implementation — that is, any storage reachable through the other parameters
or global variables used by the function. The unique annotation places similar constraints on
function parameters as the only annotation, but it does not transfer the obligation to release
storage. Splint will report an error if a unique parameter may be aliased by another parameter or
global variable.

Splint reports an error if a function returns a reference to storage reachable from one of its
parameters (if retalias is on) since this may introduce unexpected aliases in the body of the calling
function when the result is assigned.

Figure 10 illustrated sharing checks. An error is reported since the first parameter to the library
function strcpy is declared with unique. If a unique qualifier were added to the parameter
declaration for s or t, no error would be reported.

6.1.2 Returned Parameters
The returned annotation denotes a parameter that may be aliased by the return value. Splint
checks the call assuming the result may be an alias to the returned parameter.

Consider the following code excerpt:

unique.c Running Splint
include <string.h>

void
capitalize (/*@out@*/ char *s,
 char *t)
{
 7 strcpy (s, t);
 *s = toupper (*s);
}

> splint unique.c

unique.c: (in function capitalize)
unique.c:7: Parameter 1 (s) to function strcpy is
 declared unique but may be aliased externally
by
 parameter 2 (t)

Figure 10. Unique parameters

Splint Manual

32

extern intSet intSet_insert (/*@returned@*/ intSet s, int x);

intSet intSet_singleton (int x)
{
7 return (intSet_insert (intSet_new (), x));
}

Without the returned qualifier on the parameter to intSet_insert, a memory leak error would be
reported for line 7, since the only storage returned by intSet_new is not released. Because of the
returned qualifier, Splint assumes the result of intSet_insert is the same storage as its first
parameter, in this case the storage returned by intSet_new. No error is reported, since the only
storage is then transferred through the return value (which has an implicit only annotation, see
Section 5.3).

6.2 Exposure
Splint detects places where the representation of an abstract type is exposed. This occurs if a
client has a pointer to storage that is part of the representation of an instance of the abstract type.
The client can then modify or examine the storage this points to, and manipulate the value of the
abstract type instance without using its operations.

There are three ways a representation may be exposed:
1. Returning (or assigning to a global variable) an object that includes a pointer to a mutable

component of an abstract type representation. (Controlled by ret-expose).
2. Assigning a mutable component of an abstract object to storage reachable from an actual

parameter or a global variable that may be used after the call. This means the client may
manipulate the abstract object using the actual parameter after the call. Note that if the
corresponding formal parameter is declared only, the caller may not use the actual parameter
after the call so the representation is not exposed. (Controlled by assign-expose).

3. Casting mutable storage to or from an abstract type. (Controlled by cast-expose).

Annotations may be used to allow exposed storage to be returned safely by restricting how the
caller may use the returned storage.

6.2.1 Read-Only Storage
It is often useful for a function to return a pointer to internal storage (or an instance of a mutable
abstract type) that is intended only as an observer. The caller may use the result, but should not
modify the storage it points to. For example, consider a naïve implementation of the
employee_getName operation for the abstract employee type:
 typedef /*@abstract@*/ struct {
 char *name;
 int id;
 } *employee;
 …
 char *employee_getName (employee e) { return e->name; }

Splint produces a message to indicate that the return value exposes the representation. One
solution would be to return a fresh copy of e->name. This is expensive, though, especially if we
expect employee_getName is used mainly just to get a string for searching or printing. Instead,
we could change the declaration of employee_getName to:

extern /*@observer@*/ char *employee_getName (employee e);

 UVA Secure Programming Group

33

Now, the original implementation is correct. The declaration indicates that the caller may not
modify the result, so it is acceptable to return shared storage. (The program must also not use the
returned observer storage after any other calls to the abstract type module using the same
parameter. Splint does not attempt to check this, and in practice it is rarely a problem.) Splint
checks that the caller does not modify the return value. An error is reported if observer storage is
modified directly, passed as a function parameter that may be modified, assigned to a global
variable or reference derivable from a global variable that is not declared with an observer
annotation , or returned as a function result or a reference derivable from the function result that
is not annotation with an observer annotation.

String Literals
A program that attempts to modify a string literal has undefined behavior [ISO, 6.4.5]. This is not
enforced by most C compilers, and can lead to particularly pernicious bugs that only appear when
optimizations are turned on and the compiler attempts to minimize storage for string literals.
Splint can be used to check that string literals are not modified, by treating them as -observer
storage. If +read-only-strings is set (default in standard mode), Splint will report an error if a
string literal is modified.

6.2.2 Exposed Storage
Sometimes it is necessary to expose the representation of an abstract type. This may be evidence
of a design flaw, but in some cases is justified for efficiency reasons. The exposed annotation
denotes storage that is exposed. It may be used on a return value for results that reference storage
internal to an abstract representation, on a parameter value to indicate a parameter that may be
assigned directly to part of an abstract representation (note that if the parameter is annotated with
only, it is not an error to assign it to part of an abstract representation, since the caller may not use
the storage after the call returns), or on a field of an abstract representation to indicate that
external references to the storage may exist. An error is reported if exposed storage is released,
but unlike an observer, no error is reported if it is modified. Figure 11 shows examples of
exposure problems detected by Splint.

Splint Manual

34

exposure.c Running Splint
include "employee.h"

char *
employee_getName (employee e)
{
6 return e->name;
}

/*@observer@*/ char *
employee_obsName (employee e)
{ return e->name; }

/*@exposed@*/ char *
employee_exposeName (employee e)
{ return e->name; }

void
employee_capName (employee e)
{
 char *name;

 name = employee_obsName (e);
23 *name = toupper (*name);
}

> splint exposure.c +checks

exposure.c:6: Function returns reference to
 parameter e: e->name
exposure.c:6: Return value exposes rep of
 employee: e->name
exposure.c:6: Released storage e->name
reachable
 from parameter at return point
 exposure.c:6: Storage e->name is released
exposure.c:23: Suspect modification of observer
 name: *name = toupper(*name)

Three messages are reported for line 6 where a
mutable field of an abstract type is returned with
no sharing qualifier (without +checks only the
third one would be reported.) The error for line
23 reports a modification of an observer. If the
call in line 22 were changed to call
employee_exposeName, no error would be
reported.

Figure 11. Exposure

 UVA Secure Programming Group

35

7 Function Interfaces
Functions communicate with their calling environment through an interface. The caller
communicates the values of actual parameters and global variables to the function, and the
function communicates to the caller through the return value, global variables and storage
reachable from the actual parameters. By keeping interfaces narrow (restricting the amount of
information visible across a function interface), we can understand and implement functions
independently.

A function prototype documents the interface to a function. It serves as a contract between the
function and its caller. In early versions of C, the function “prototype” was very limited. It
described the type returned by the function but nothing about its parameters. ANSI C (1989)
provided function prototypes with the ability to add information on the number and types of
parameter to a function. Splint provides the means to express much more about a function
interface such as what global variable the function may use and what values visible to the caller it
may modify.

The extra interface information places constraints on both how the function may be called and
how it may be implemented. Splint reports places where these constraints are not satisfied.
Typically, these indicate bugs in the code or errors in the interface documentation.

This section describes annotations that may be added to a function declaration to document what
global variables the function implementation may use and what values visible to its caller it may
modify.

7.1 Modifications
The modifies clause lists what values visible to the caller may be modified by a function.
Modifies clauses limit what values a function may modify, but they do not require that listed
values are always modified. The declaration,

int f (int *p, int *q) /*@modifies *p@*/;

declares a function f that may modify the value pointed to by its first argument but may not
modify the value of its second argument or any global state.

Splint checks that a function does not modify any caller-visible value not encompassed by its
modifies clause and does modify all values listed in its modifies clause on some possible
execution of the function. Figure 12 shows an example of modifies checking done by Splint.

Splint Manual

36

7.1.1 State Modifications
A few special names are provided for describing function modifications that effect state not
identifiable through parameters or global variables:

internalState
The function modifies some internal state (that is, the value of a static variable). Even
though a client cannot access the internal state directly, it is important to know that
something may be modified by the function call both for clear documentation and for
checking undefined order of evaluation (Section 8.2) and side effect free parameters
(Section 11.2.1).

fileSystem
The function modifies the file system. Any modification that may change the system state
is considered a file system modification. All functions that modify an object of type
pointer to FILE also modify the file system. In addition, functions that do not modify a
FILE pointer but modify some state that is visible outside this process also modify the file
system (e.g., rename). The flag mod-file-system controls reporting of undocumented file
system modifications.

nothing
The function modifies nothing (i.e., it is side effect free).

The annotation, /*@*/ in a function declaration or definition (after the parameter list, before the
semi-colon or function body) denotes a function that modifies nothing and does not use any
global variables (see Section 7.2).

7.1.2 Missing Modifies Clauses
Splint is designed so programs with many functions that are declared without modifies clauses
can be checked effectively. Unless modnomods is in on, no modification errors are reported
checking a function declared with no modifies clause.

A function with no modifies clause is an unconstrained function since there are no documented
constraints on what it may modify. When an unconstrained function is called, it is checked
differently from a function declared with a modifies clause. To prevent spurious errors, no
modification error is reported at the call site unless the mod-uncon flag is on. Flags control
whether errors involving unconstrained functions are reported for other checks that depend on

modify.c Running Splint
void setx (int *x, int *y)
 /*@modifies *x@*/
{
4 *y = *x;
}

void sety (int *x, int *y)
 /*@modifies *y@*/
{
 setx (y, x);
}

> splint modify.c +checks
modify.c:4: Undocumented modification of *y: *y = *x
modify.c:5: Suspect object listed in modifies of setx
 not modified: *x
 modify.c:1: Declaration of setx

There are no errors for sety – the call to setx modifies
the value pointed to by its first parameter (y) as
documented by the modifies clause. The checks mode
turns on mustmod checking, so the second error
concerning missing documented modifications is reported.

Figure 12. Modification

 UVA Secure Programming Group

37

modifications (side effect free macro parameters (Section 11.2.1), undefined evaluation order
(Section 8.2), and likely infinite loops (Section 8.3.1).)

7.2 Global Variables
Another aspect of a function’s interface, is the global variables it uses. A globals list in a
function declaration lists external variables that may be used in the function body. Splint checks
that global variables used in a procedure match those listed in its globals list. A global is used in a
function if it appears in the body directly, or it is in the globals list of a function called in the
body. Splint reports if a global that is used in a procedure is not listed in its globals list, and if a
listed global is not used in the function implementation. Figure 13 shows an example function
definition with a globals list and associated checking done by Splint.

7.2.1 Controlling Globals Checking
Whether on not an error is reported for a use of a global variable in a given function depends on
the scope of the variable (file static or external), the checking annotation used in the variable
declaration or the implicit annotation if no checking annotation is used, whether or not the
function is declared with a globals list, and flag settings.

A global or file static variable declaration may be preceded by an annotation to indicate how the
variable should be checked. In order of decreasing checks, the annotations are:

/*@checkedstrict@*/
Strictest checking. Undocumented uses and modifications of the variable are reported in
all functions whether or not they have a globals list (unless check-strict-globs is off).

/*@checked@*/
Undocumented use of the variable is reported in a function with a globals list, but not in a
function declared with no globals (unless glob-noglobs is on).

/*@checkmod@*/
Undocumented uses of the variable are not reported, but undocumented modifications are
reported. (If mod-globs-nomods is on, errors are reported even in functions declared with
no modifies clause or globals list.)

/*@unchecked@*/
No messages are reported for undocumented use or modification of this global variable.

If a variable has none of these annotations, an implicit annotation is determined by the flag
settings.

Different flags control the implicit annotation for variables declared with global scope and
variables declared with file scope (i.e., using the static storage qualifier). To set the implicit
annotation for global variables declared in context (globs for external variables or statics for file
static variable) to be annotation (checked, checkmod, checkedstrict) use imp<annotation>

globals.c Running Splint
int glob1, glob2;

3 int f (void) /*@globals
glob1;@*/
{
5 return glob2;
}

> splint globals.c +checks

globals.c:5: Undocumented use of global glob2
globals.c:3: Global glob1 listed but not used

Figure 13. Global Variables

Splint Manual

38

<context>. For example, +imp-checked-strict-statics makes the implicit checking on unqualified
file static variables checkedstrict. See Appendix B for a complete list of globals checking flags.

7.2.2 Definition State
Annotations can be used in the globals list of a function declaration to describe the states of
global variables before and after the call. If a global is preceded by undef, it is assumed to be
undefined before the call. Thus, no error is reported if the global is not defined when the function
is called, but an error is reported if the global is used in the function body before it is defined.
The killed annotation denotes a global variable that may be undefined when the call returns. For
globals that contain dynamically allocated storage, a killed global variable is similar to an only
parameter (Section 5.2). An error is reported if it contains the only reference to storage that is not
released before the call returns. Figure 14 illustrated killed and undef globals.

7.3 Declaration Consistency
Splint checks that function declarations and definitions are consistent. The general rule is that the
first declaration of a function implies all later declarations and definitions. If a function is
declared in a header file, the first declaration processed is its first declaration (if it is declared in
more than one header file an error is reported if redecl is set). Otherwise, the first declaration in
the file defining the function is its first declaration.

Later declarations may not include variables in the globals list that were not included in the first
declaration. The exception to this is when the first declaration is in a header file and the later
declaration or definition includes file static variables. Since these are not visible in the header
file, they can not be included in the header file declaration. Similarly, the modifies clause of a
later declaration may not include objects that are not modifiable in the first declaration. The later
declaration may be more specific. For example, if the header declaration is:

 annotglobs.c Running Splint
int globnum;

struct {
 char *firstname, *lastname;
 int id;
} globname;

void
initialize (/*@only@*/ char *name)
 /*@globals undef globnum,
 undef globname @*/
{
13 globname.id = globnum;
 globname.lastname = name;
15}

void finalize (void)
 /*@globals killed globname@*/
{
 free (globname.lastname);
21 }

> splint annotglobs.c

annotglobs.c:13: Undef global globnum used
 before definition
annotglobs.c:15: Global storage globname
 contains 1 undefined field when call
 returns: firstname
annotglobs.c:21: Only storage
 globname.firstname (type char *) derived
 from killed global is not released
 (memory leak)

Figure 14. Annotated Globals Lists

 UVA Secure Programming Group

39

extern void setName (employee e, char *s) /*@modifies e@*/;

the later declaration could be,
 void setName (employee e, char *) /*@modifies e->name@*/;

If employee is an abstract type, the declaration in the header should not refer to a particular
implementation (i.e., it shouldn’t rely on there being a name field), but the implementation
declaration can be more specific.

This rule also applies to file static variables. The header declaration for a function that modifies a
file static variable should use modifies internalState since file static variables are not visible to
clients. The implementation declaration should list the specific variables that may be modified.

7.4 State Clauses
Sometimes it is necessary to specify function interfaces at a lower level than is possible with the
standard annotations. For example, if a function defines some fields of a returned structure but
does not define all the fields. The /*@special@*/ annotation is used to mark a parameter, global
variable, or return value that is described using state clauses.

State clauses may be used to constrain the state of a parameter or return value before or after a
call. One or more state clauses may appear in a function declaration, before the modifies or
globals clauses. State clauses may be listed in any order, but the same state clause should not be
used more than once. In a state clause list, result is refers to the return value of the function.

The following state clauses are used to describe the definition state or parameters before and after
the function is called and the return value after the function returns:

/*@uses <references>@*/
References in a uses clause must be completely defined before the function is called. They
are assumed to be defined at function entrance when the function is checked.

/*@sets <references>@*/
References in a sets clause must be allocated before the function is called. They are
completely defined after the function returns. They are assumed to be allocated but
undefined storage at function entrance and an error is reported if there is a path on which
they are not defined before the function returns.

/*@defines <references>@*/
References in a defines clause must not refer to unshared, allocated storage before the
function is called. They are completely defined after the function returns. When the
function is checked, they are assumed to be undefined at function entrance and an error is
reported if there is a path on which they are not defined before the function returns.

/*@allocates <references>@*/
References in an allocates clause must be unallocated before the function is called. They
are allocated but not necessarily defined after the function returns. An error is reported if
there is a path through the function on which they are not allocated before the function
returns.

/*@releases <references>@*/

Splint Manual

40

References in the releases clause are deallocated by the function. They must be storage
that could be passed as an only parameter before the function is called, and are dead
pointers after the function returns. They are assumed to be defined at function entrance
and an error is reported if they refer to live, allocated storage at any return point.

Some examples of state clauses are shown in Figure 15. The defines clause for record_new
indicates that the id field of the structure pointed to by the result is defined, but the name field is
not. So, record_create needs to call record_setName to define the name field. Similarly, the
releases clause for record_clearName indicates that no storage is associated with the name field
of its parameter after the return, so no failure to deallocate storage message is produced for the

clauses.c
typedef struct
{
 int id;
 /*@only@*/ char *name;
} *record;

static /*@special@*/ record record_new (void)
 /*@defines result->id@*/
{
 record r = (record) malloc (sizeof (*r));

 assert (r != NULL);
 r->id = 3;
 return r;
}

static void
 record_setName (/*@special@*/ record r, /*@only@*/ char *name)
 /*@defines r->name@*/
{
 r->name = name;
}

record record_create (/*@only@*/ char *name)
{
 record r = record_new ();
 record_setName (r, name);
 return r;
}

void record_clearName (/*@special@*/ record r)
 /*@releases r->name@*/
 /*@ensures isnull r->name@*/
{
 free (r->name);
 r->name = NULL;
}

void record_free (/*@only@*/ record r)
{
 record_clearName (r);
 free (r);
}

Figure 15. State Clauses

 UVA Secure Programming Group

41

call to free in record_free. The ensures isnull clause is described in the next section.

7.5 Requires and Ensures Clauses
More general assumptions about state of parameters and globals before and after a function is
called can be described using requires and ensures clauses. A requires clause specifies a
predicate that must be true at a call site; when checking a function implementation Splint assumes
the constraints given in its requires clauses are true at function entry. An ensures clause specifies
a predicate that is true at a call site after the call returns; when checking a function
implementation Splint warns if there is an execution path that does not return with a state that
satisfies the constraints given in its ensures clauses. A function declaration can have many
requires and ensures clauses as long as their meanings are not contradictory.

The following constraints can be stated using requires and ensures clauses:

Aliasing Annotations
/*@requires only<references>@*/; /*@ensures only<references>@*/
/*@requires shared<references>@*/; /*@ensures shared<references>@*/
/*@requires owned<references>@*/; /*@ensures owned<references>@*/
/*@requires dependent<references>@*/; /*@ensures dependent<references>@*/

References refer to only, shared, owned or dependent storage before (requires) or after
(ensures) the call.

Exposure Annotations
/*@requires observer<references>@*/; /*@ensures observer<references>@*/
/*@requires exposed<references>@*/; /*@ensures exposed <references>@*/

References refer to observer or exposed storage before (requires) or after (ensures) the
call.

Null State Annotations
/*@requires isnull<references>@*/; /*@ensures isnull<references>@*/

References have the value NULL before (requires) or after (ensures) the call. Note, this is
not the same name or meaning as the null annotation (which means the value may or may
not be NULL.)

/*@requires notnull<references>@*/; /*@ensures notnull<references>@*/
References do not have the value NULL before (requires) or after (ensures) the call.

Splint Manual

42

8 Control Flow
The section describes checking done by Splint related to control flow. Many of these checks are
significantly improved because of the extra information that is known about the program when
annotations are provided.

8.1 Execution
To detect certain errors and avoid spurious errors, it is important to know something about the
control flow behavior of called functions. Without additional information, Splint assumes that all
functions eventually return and execution continues normally at the call site.

The noreturn annotation is used to denote a function that never returns8. For example,

extern /*@noreturn@*/ void fatalerror (/*@observer@*/ char *s);

declares fatalerror to never return. This enables Splint to correctly analyze code like,
 if (x == NULL) fatalerror ("Yikes!");
 *x = 3;

Other functions may return, but sometimes (or usually) return normally. The maynotreturn
annotation denotes a function that may or may not return. This may be useful for documentation,
but does not help checking much, since Splint must assume that a function declared with
maynotreturn returns normally when checking the code. The alwaysreturns annotation denotes a
function that always returns (but Splint does no checking to verify this).

To describe non-returning functions more precisely, the noreturnwhentrue and noreturnwhenfalse
annotations may be used. Similar to nullwhentrue and falsewhennull (see Section 2.1.1),
noreturnwhentrue and noreturnwhenfalse mean that a function never returns if the value of its
first argument is true (noreturnwhentrue) or false (noreturnwhenfalse). They may be used only
on functions whose first argument is a Boolean.

Hence, a function declared with noreturnwhenwfalse must not return if the value of its argument
is false. For example, the standard library declares assert as9:

/*@noreturnwhenfalse@*/ void
assert (/*@sef@*/ bool /*@alt int@*/ pred);

This way, code like,
 assert (x != NULL);
 *x = 3;
is checked without reporting a false warning, since the noreturnwhenwfalse annotation on assert
means the deference of x is not reached is x != NULL is false.

8 In versions of Splint before 3.0, the noreturn annotation was named exits. The noreturn annotation
means the same thing, but is a more appropriate name. For legacy code, Splint still supports the exits
annotations. Similarly, maynotreturn replaces mayexit, noreturnwhentrue replaces truexit and
noreturnwhenfalse replaces falseexit.
9The sef annotation denotes a parameter as side effect free (see Section 11.2.1). We use bool /*@alt
int@*/ as the type of the parameter, to indicate that it may be either a Boolean or an integer.

 UVA Secure Programming Group

43

8.2 Undefined Behavior
The order in which side effects take place in a C program is not entirely defined by the code.
Certain execution points are known as sequence points — a function call (after the arguments
have been evaluated), the end of a full expression (an initializer, expression in an expression
statement, the control expression of an if, switch, while or do statement, each expression of a for
statement, and the expression in a return statement), and after the first operand or a &&, ||, ? or ,
operand.

All side effects before a sequence point must be complete before the sequence point, and no
evaluations after the sequence point shall have taken place. Between sequence points, side effects
and evaluations may take place in any order. Hence, the order in which expressions or arguments
are evaluated is not specified. Compilers are free to evaluate function arguments and parts of
expressions (that do not contain sequence points) in any order. The behavior of code is undefined
if it uses a value that is modified by another expression that is not required to be evaluated before
or after the other use.

Splint detects instances where undetermined order of evaluation produces undefined behavior. If
modifies clauses and globals lists are used, this checking is enabled in expressions involving
function calls. Evaluation order checking is controlled by the eval-order flag.

When checking systems without modifies and globals information (see Section 7), evaluation
order checking may report errors when unconstrained functions are called in procedure
arguments. Since Splint has no annotations to constrain what these functions may modify, it
cannot be guaranteed that the evaluation order is defined if another argument calls an
unconstrained function or uses a global variable or storage reachable from a parameter to the
unconstrained function. Its best to add modifies and globals clauses to constrain the
unconstrained functions in ways that eliminate the possibility of undefined behavior. For large
legacy systems, this may require too much effort. Instead, the -eval-order-uncon flag may be

order.c Running Splint
extern int glob;

extern int mystery
(void);

extern int modglob
(void)
 /*@globals glob@*/
 /*@modifies glob@*/;

int f (int x, int y[])
{
11 int i = x++ * x;

13 y[i] = i++;
14 i += modglob() *
glob;
15 i += mystery() *
glob;
16 return i;
}

> splint order.c +evalorderuncon
order.c:11: Expression has undefined behavior (value of
 right operand modified by left operand): x++ * x
order.c:13: Expression has undefined behavior (left operand
 uses i, modified by right operand): y[i] = i++
order.c:14: Expression has undefined behavior (value of
 right operand modified by left operand):
 modglob() * glob
order.c:15: Expression has undefined behavior
 (unconstrained function mystery used in left operand
 may set global variable glob used in right operand):
 mystery() * glob

The warning for line 14 is reported because the modifies
clause of modglob indicated that it may modify glob. The
behavior is undefined since we don’t know if glob is
evaluated before, after or during the modification. The line
15 warning would not be reported without
+evalorderuncon.

Figure 16. Evaluation Order

Splint Manual

44

used to prevent reporting of undefined behavior due to the order of evaluation of unconstrained
functions. Figure 16 illustrates detection of undefined behavior.

8.3 Problematic Control Structures
A number of control structures that are syntactically legal may indicate likely bugs in programs.
Splint can detect errors involving likely infinite loops (Section 8.3.1), fall through cases and
missing cases in switch statements (Section 8.3.2), break statements within deeply nested loops or
switches (Section 8.3.3), clauses of if, while or for statements that are empty statements or
unblocked single statements (Section 8.3.4) and incomplete if-else logic (Section 8.3.5).
Although any of these may appear in a correct program, depending on the programming style
used they may indicate likely bugs or style violations that should be detected and eliminated.

8.3.1 Likely Infinite Loops
Splint reports an error if it detects a loop that appears to be infinite. An error is reported for a
loop that does not modify any value used in its condition test inside the body of the loop or in the
condition test itself. This checking is enhanced by modifies clauses and globals lists (see Section
7) since they provide more information about what global variable may be used in the condition
test and what values may be modified by function calls in the loop body.

Figure 17 shows examples of infinite loops detected by Splint. An error is reported for the loop in
line 14, since neither of the values used in the loop condition (x directly and glob1 through the
call to f) is modified by the body of the loop. If the declaration of g is changed to include glob1
in the modifies clause no error is reported. (In this example, if we assume the annotations are
correct, then the programmer has probably called the wrong function in the loop body. This isn’t
surprising, given the horrible choices of function and variable names!)

If an unconstrained function is called within the loop body, Splint will assume that it modifies a
value used in the condition test and not report an infinite loop error, unless infloopsuncon is on. If
infloopsuncon is on, Splint will report infinite loop errors for loops where there is no explicit
modification of a value used in the condition test, but where they may be an undetected
modification through a call to an unconstrained function (e.g., line 12 in Figure 17).

loop.c Running Splint
extern int glob1, glob2;
extern int f (void)
 /*@globals glob1@*/
 /*@modifies nothing@*/;
extern void g (void)
 /*@modifies glob2@*/ ;
extern void h (void) ;

void upto (int x)
{
14 while (x > f ()) g();
15 while (f () < 3) h();
}

> splint loop.c +infloopsuncon
loop.c:14: Suspected infinite loop. No value used in
 loop test (x, glob1) is modified by test or loop
 body.
loop.c:15: Suspected infinite loop. No condition
 values modified. Modification possible through
 unconstrained calls: h
An error is reported for line 14 since the only value
modified by the loop test or body if glob2 and the value
of the loop test does not depend on glob2. The error for
line 15 would not be reported without +infloopsuncon.

Figure 17. Infinite Loops

 UVA Secure Programming Group

45

8.3.2 Switches
The automatic fall through of C switch statements is almost never the intended behavior.10 Splint
detects case statements with code that may fall through to the next case. The casebreak flag
controls reporting of fall through cases. A single fall through case may be marked by preceding
the case keyword with /*@fallthrough@*/ to indicate explicitly that execution falls through to
this case. See Figure 18 for an example.

For switches on enum types, Splint reports an error if a member of the enumerator does not
appear as a case in the switch body (and there is no default case). (Controlled by misscase.)

8.3.3 Deep Breaks
There is no syntax provided by C (other than goto) for breaking out of a nested loop. All break
and continue statements act only on the innermost surrounding loop or switch. This can lead to
serious problems11 when a programmer intends to break the outer loop or switch instead. Splint
optionally reports warnings for break and continue statements in nested contexts.

Four types of break warnings are reported:

• break inside a loop (while or for) that is inside a loop. Controlled by looploopbreak. To
indicate that a break is inside an inner loop, precede the break by /*@innerbreak@*/.

• break inside a loop that is inside a switch statement. Controlled by switchloopbreak. To mark
the break as a loop break, precede the break by /*@loopbreak@*/.

• break inside a switch statement that is inside a loop. Controlled by loopswitchbreak. To mark
the break as a switch break, precede the break by /*@switchbreak@*/.

• break inside a switch inside another switch. Controlled by switchswitchbreak. To indicate that
the break is for the inner switch, use /*@innerbreak@*/.

Since continue only makes sense within loops, a warning (controlled by looploopcontinue) is
reported only for continue statements within nested loops. A safe inner continue may be

10 Peter van der Linden estimates that default fall through is the wrong behavior 97% of the time. [vdL95,
p. 37]
11 “Software Glitch Cripples AT&T Network”, Telephony, 22 January 1990.

switch.c Running Splint
typedef enum {
 YES, NO, DEFINITELY,
 PROBABLY, MAYBE } ynm;
void decide (ynm y)
{
 switch (y)
 {
 case PROBABLY:
 case NO: printf ("No!");
10 case MAYBE: printf ("Maybe");
 /*@fallthrough@*/
 case YES: printf ("Yes!");
13 }
}

> splint switch.c
switch.c:10: Fall through case (no preceding
break)
switch.c:13: Missing case in switch: DEFINITELY

No fall through error is reported for the NO
case, since there are no statements associated
with the previous case.

The /*@fallthrough@*/ comment prevents a
message from being produced for the YES
case.

Figure 18. Switch Cases

Splint Manual

46

preceded by /*@innercontinue@*/ to suppress error messages locally. The deepbreak flag sets all
nested break and continue checking flags.

Splint warns if the marker preceding a break is not consistent with its placement. A warning
results if innerbreak precedes a break that is not breaking an inner loop, switchbreak precedes a
break that is not breaking a switch, or loopbreak precedes a break that is not breaking a loop.

8.3.4 Loop and If Bodies
An empty statement after an if, while or for often indicates a potential bug. A single statement
(i.e., not a compound block) after an if, while or for is not likely to indicate a bug, but make the
code harder to read and edit. Splint can report errors for if or loop statements with empty bodies
or bodies that are not compound statements. Separate flags control checking for statements
following an if, while or for:

• [if, while, for]empty — report errors for empty bodies (e.g., if (x > 3) ;)
• [if, while, for]block — report errors for non-block bodies (e.g., if (x > 3) x++;)

The if statement checks also apply to the body of the else clause. No ifblock warning is reported
if the body of the else clause is an if statement, to allow conventional else if chains.

8.3.5 Complete Logic
Although it may be perfectly reasonable in many contexts, an if-else chain with no final else may
indicate missing logic or forgetting to check error cases. If elseif-complete is on, Splint warns
when an if statement that is the body of an else clause does not have a matching else clause. For
example, the code,
 if (x == 0) { return "nil"; }
 else if (x == 1) { return "many"; }

results in a warning since the second if has no matching else branch.

8.4 Suspicious Statements
Splint detects errors involving statements with no apparent effects (Section 8.4.1) and statements
that ignore the result of a called function (Section 8.4.2).

8.4.1 Statements with No Effects
Splint can report errors for statements that have no effect. (Controlled by no-effect.) Because of
modifies clauses, Splint can detect more errors than traditional checkers. Unless the no-effect-
uncon flag is on, errors are not reported for statements that involve calls to unconstrained
functions since the unconstrained function may cause a modification. Figure 19 shows examples
of Splint’s no effect checking.

 UVA Secure Programming Group

47

8.4.2 Ignored Return Values
Splint reports an error when a return value is ignored. Checking may be controlled based on the
type of the return value: ret-val-int controls reporting of ignored return values of type int, and
ret-val-bool for return values of type bool, and ret-val-others for all other types. A function
statement may be cast to void to prevent this error from being reported.

Alternate types (Section 4.4) can be used to declare functions that return values that may safely
be ignored by declaring the result type to alternately be void. Several functions in the standard
library are specified to alternately return void to prevent ignored return value errors for standard
library functions (e.g., strcpy) where the result may be safely ignored (see Section 14.1).
Figure 20 shows examples of ignored return value errors reported by Splint.

noeffect.c Running Splint
extern void
 nomodcall (int *x) /*@*/;

Recall /*@*/ is shorthand for modifies
nothing and use no globals.

extern void mysterycall (int *x);

int noeffect (int *x, int y)
{
 y == *x;
 nomodcall (x);
 mysterycall (x);
 return *x;
}

> splint noeffect.c +noeffectuncon
noeffect.c:6: Statement has no effect: y == *x
noeffect.c:7: Statement has no effect:
nomodcall(x)
noeffect.c:8: Statement has no effect (possible
 undetected modification through call to
 unconstrained function mysterycall):
 mysterycall(x)

The warning for line 8 would not be
reported without +noeffectuncon.

Figure 19. Statements with No Effect

ignore.c Running Splint
include “bool.h”
extern int fi (void);
extern bool fb (void);
extern int /*@alt void@*/
 fv (void);

int ignore (void)
{
 8 fi ();
 9 (void) fi ();
10 fb ();
11 fv ();
12 return fv ();
}

> splint ignore.c

ignore.c:8: Return value (type int) ignored: fi()
ignore.c:10: Return value (type bool) ignored: fb()

The message for line 8 would not be reported if -retvalint is
set; for line 10, if -retvalbool is set.

 No message is reported for line 9 because the result is cast to
void, and no message is reported for line 11 because fv is
declared to alternately return void.

Figure 20. Ignored Return Values

Splint Manual

48

9 Buffer Sizes
Buffer overflow errors are a particularly dangerous type of bug in C programs. They are directly
responsible for about half of all security attacks [Larochelle01]. For performance reasons, C does
not perform run time bounds checking. Referencing storage outside allocated regions can cause
memory corruption and lead to strange behavior. Moreover, buffer overflow bugs are particularly
insidious because they can go undetected in testing or normal use, but usually result in security
critical bugs. Reads beyond the end of a buffer can cause the program to leak information.
Writes beyond the end a buffer (buffer overflows) can usually be exploited make the program run
arbitrary code. Attackers can exploit these programming bugs to replace the return address on the
stack and place arbitrary code in memory thereby gaining full access to the machine. Splint is
able to detect many memory bounds errors. 12

9.1 Checking Accesses
Splint models blocks of contiguous memory using two properties: maxSet and maxRead. Given a
buffer b, maxSet(b) denotes the highest address beyond b that can be safely used as an lvalue.
For the declaration char buf[MAXSIZE] we have maxSet(buf) = MAXSIZE - 1. Similarly,
maxRead denotes the highest index of a buffer that can be safely used an rvalue. It is
inappropriate to read an uninitialized element or beyond the NUL terminator of a null terminated
buffer.

When a buffer is accessed as an lvalue, Splint generates a precondition constraint involving the
maxSet property. When a buffer is accessed as an rvalue, Splint generates a precondition
constraint involving the maxRead property. For the expression *ptr, Splint generates the
constraints maxSet(ptr) >= 0 or maxRead(ptr) >= 0 depending on whether ptr is used as an lvalue
or rvalue. Similarly, for accesses of the form ptr[i], splint generates the constraints maxSet(ptr)
>= i or maxRead(ptr) >= i. If +boundswrite is set, Splint warns if it is unable to resolve a
constraint involving maxSet. If +boundsread is set, Splint warns about unresolved maxRead
constraints also.

Splint generates postconditions for statements to help resolve precondition constraints. When a
buffer is written to we know that an element of a buffer is initialized and is safe to read. We
generate the postcondition maxRead(ptr) >= 0 if the buffer is accessed using *ptr or maxRead(ptr)
>= i if the buffer is accessed using ptr[i]. Splint generates additional postconditions for a variety
of C constructs. For assignment statements, Splint generates a postcondition equating the two
operands. Splint also generates post condition constraints for the maxSet value of fixed sized
arrays.

9.2 Annotating Buffer Sizes
Function declarations may include requires and ensures clauses that specify assumptions about
buffer sizes for function preconditions. They are interpreted like requires and ensures clauses for
simple memory states (see Section 7.5) but can be more expressive. When a function with a
requires clause is called, the call site must be checked to satisfy the constraints implied by the
requires clause. Similarly, an ensures clause can be used to specify function post conditions. If
the +checkpost flag is set, Splint warns if it cannot verify that a function implementation satisfies
its declared postconditions.

12 See [Larochelle01] for information on internal aspects of the checking.

 UVA Secure Programming Group

49

Constraints can contain function parameters as well as global variables and integer constants. The
unary operators, maxSet and maxRead which correspond to the properties described above are
also supported. Multiple predicates may be conjoined using /\.

For example, the standard library annotates strcpy:

void /*@alt char * @*/strcpy
(/*@unique@*/ /*@out@*/ /*@returned@*/ char *s1, char *s2)
/*@modifies *s1@*/
/*@requires maxSet(s1) >= maxRead(s2) @*/

 /*@ensures maxRead(s1) == maxRead (s2) @*/;

The requires clause indicates that the buffer passed as s1 must be large enough to hold the string
passed as s2. The ensures clause specifies that maxRead of s1 after the call is equal to maxRead
of s2. In cases where the size of s2 is unknown, programs should use strncpy, annotated as:

void /*@alt char * @*/ strncpy
 (/*@unique@*/ /*@out@*/ /*@returned@*/ char *s1, char *s2,

 size_t n)
 /*@modifies *s1@*/
 /*@requires maxSet(s1) >= (n - 1); @*/
 /*@ensures maxRead (s2) >= maxRead(s1) /\ maxRead (s1) <= n;@*/;

The syntax for buffer size constraint clauses is:

constraint ⇒ (requires | ensures) consExpr relOp consExpr
relOp ⇒ == | > | >= | < | <=
consExpr ⇒ consExpr binOp consExpr | unaryOp (consExpr) | term
binOp ⇒ + | -
unaryOp ⇒ maxSet | maxRead
term ⇒ identifier | literal | result

9.3 Less Stringent Checking

For some programs, Splint’s standard bounds checking produces an unacceptably high number of
warnings. Because of this, Splint now prioritizes warnings using a simple heuristic. The flags
likely-bounds, likely-bounds-write, and likely-bounds-read are similar to bounds, bounds-write,
and bounds-read but they only cause Splint to produce warnings for what it determines are likely
bounds errors. Splint classifies an unresolved constraint as a likely bounds error if it can reduce
the constraint to a numerical inconsistency such as 5 >= 10. Warnings for these constraints are
more likely to be legitimate -- indicating real bugs or the lack of annotations. Additionally, when
these warnings are false positives, it is easier for humans to recognize them as spurious. These
flags generate significantly fewer errors (an order of magnitude in some cases), and the errors
generated are easier to understand. However, this does not come without cost. The checking is
significantly less precise and is likely to miss real errors.

9.4 Warnings
Since bounds checking is more complex than other checks done by Splint, memory bounds
warnings contain extensive information about the unresolved constraint. Warning messages for
unresolved constraints contain both the original constraints and the simplified form of the

Splint Manual

50

constraint which cannot be resolved. If the constraint was derived from a function precondition,
the original precondition is included in the error message. If the +showconstraintlocation flag is
set, the message includes the expression that the constraint is derived from. The
+showconstraintparens flag directs Splint to display fully parenthesized constraints in warnings
to remove ambiguity.

Consider the code excerpt below containing a trivial out-of-bounds write:

int buf[10];
buf[10] = 3;

Splint warns:-

setChar.c:5:4: Likely out-of-bounds store:
 buf[10]

 Unable to resolve constraint: requires 9 >= 10
 needed to satisfy precondition: requires maxSet(buf @ setChar.c:5:4) >= 10

Splint has simplified the constraint from the requires clause to 9 >= 10 by substituting for the
known value of maxSet(buf) and generated a warning because 9 (the highest index of buf that
may be safely written to) is not greater than or equal to 10.

A more realistic example is shown Figure 21. The function updateEnv is a naïve implementation
of a function to copy an environmental variable. There is no standard restriction on the length of
the return value of getenv so this can cause a buffer overflow. A safe version of updateEnv (such
as updateEnvSafe in Figure 21) would ensure that the buffer is large enough to hold the
environment variable string before copying. The requires clause means Splint will report a
warning if a call to updateEnvSafe passed in a buffer as str that is not big enough to hold the
value passed as strSize characters.

In many cases, functions will have multiple unresolved constraints which are similar. For
example, if a subsequence statement writes to the next element of a buffer. Usually, all these
constraints represent all real problems or are all spurious. If the +redundantconstraints flag is set,
Splint reports even apparently redundant warning messages. Otherwise, if satisfying one
unresolved constraint would imply satisfying another, Splint only prints a warning message for
the stronger constraint.

 UVA Secure Programming Group

51

The +functionpost flag is useful for determining if array bounds warnings are spurious. If this
flag is set, Splint will print the constraints that it established at the end of the function. If
warnings are spurious, localized control comments can be used to suppress them.

Bounds.c Running Splint

void updateEnv(char * str)
{
 char * tmp;
7 tmp = getenv(“MYENV”);
 if (tmp != NULL)
9 strcpy (str, tmp);
}

void updateEnvSafe (char * str,
 size_t strSize)
 /*@requires maxSet(str)
 >= strSize –1@*/
{
 char * tmp;
 tmp = getenv(“MYENV”);
 if (tmp != NULL)
 {
 strncpy (str, tmp,
 strSize -1);
 str[strSize -1] = ‘/0’;
 }
}

> splint bounds.c +bounds +showconstraintlocation

bounds.c:9: Possible out-of-bounds store:
 strcpy(str, tmp)
 Unable to resolve constraint:
 requires maxSet(str @ bounds.c:9) >=
 maxRead(getenv("MYENV") @ bounds.c:7)
 needed to satisfy precondition:
 requires maxSet(str @ bounds.c:9) >=
 maxRead(tmp @ bounds.c:9)
 derived from strcpy precondition: requires
 maxSet(<parameter 1>) >=
 maxRead(<parameter 2>)

Figure 21. Memory Bounds

Splint Manual

52

10 Extensible Checking
Splint provides mechanisms for defining new checks and annotations using metastate definitions.
User-defined checks can be used to check and document properties not supported by the provided
checks.13

A large class of useful checks can be described as constraints on attributes associated with
program objects or the global execution state. Unlike types, however, the values of these
attributes can change along an execution path. Splint provides a general language that lets users
define attributes associated with different kinds of program objects as well as rules that both
constrain attributes’ values at interface points and specify how attributes change.

Because user-defined attribute checking is integrated with normal checking, Splint’s analysis of
user-defined attributes can take advantage of other analyses, such as alias and nullness analysis.

10.1 Defining Attributes
To define an attribute, create a metastate file (.mts) that defined the possible values and transfer
rules of the attribute. Attributes can either be associated with a particular kind of program object
(for example, all char *’s) or with the global state (whether or not the network has been
initialized). The –mts <file> flag is used to direct Splint to read a metastate file (which will be
found on the LARCH_PATH with default extension .mts).

An example attribute definition is shown in Figure 22. It defines the taintedness attribute for
recording whether or not a char * came from a possibly untrustworthy source. Knowing whether
a value is possibly hostile is useful for preventing several security vulnerabilities including format
string bugs.14 (A simpler way to detect format vulnerabilities is to warn for any format string that
is unknown at compile time. Splint provides this checking, issuing a warning if the +formatconst
flag is set and finds any unknown format strings at compile time. This can produce spurious
messages, however, because there might be unknown format strings that are not vulnerable to
hostile input.)

The first three lines of the attribute definition define the taintedness attribute associated with char
* objects, which can be in one of two states: untainted or tainted. The context clause gives a
context selector for which objects have the attribute. In this case, reference char * means that
every reference that is a char * has an associated taintedness attribute. Other contexts include
parameter (only parameter declarations), literal (only string or number literals), and null (only
known NULL values). Attribute can also be defined that are not associated with any particular
object, but instead are associated with the global state of a program execution. The global
keyword is used before attribute to define a global attribute.

The oneof clause introduces two identifiers for representing the taintedness value: untainted for
references that are not derived from untrustworthy input, and tainted for references that may
contain hostile data.

13 This section is largely based on [Evans02].
14 C. Cowan et al., FormatGuard: Automatic Protection from printf Format String Vulnerabilities. 10th
Usenix Security Symposium, 2001.

 UVA Secure Programming Group

53

The annotations clause defines two new annotations that may be used to describe taintedness
assumptions. In this case, the annotations match the names of the value choices, but they may be
any identifier. The clause tainted reference ==> tainted defines the tainted annotation that
may be used on a reference to indicate that it has tainted state.

The transfers clause defines rules for state changes and warning when objects are passed as
parameters, returned, or assigned to externally visible references. The rule, tainted as untainted
==> error "Possibly tainted storage used where untainted required.", means it is an error to
pass a tainted value as a parameter that has untainted taintedness. All other transfers are
implicitly permitted, and leave the passed storage in the same state as before the transfer. We
may also use a transfers clause to indicate that the reference changes state after a transfer. A
losereference clause (not used in taintedness) is similar to a transfers clause, except it is used to
provide rules for when a reference to storage is lost, either by leaving the scope in which it was
declared, returning from a function, or assigning it to a new value.

The merge clause defined rules for combining state along paths. The clause merge tainted +
untainted ==> tainted indicates that combining tainted and untainted objects produces a tainted
object. Thus, if a reference is tainted along one control path and untainted along another control
path, checking assumes that it is tainted after the two branches merge. It is also used to merge
taintedness states in function specifications (see the strcat example in the next section). We can
also define error combinations so that a warning is reported if the states on different paths are
incompatible.

The defaults clause specifies default values used for declarators without explicit attribute
annotations. We choose default values to make it easy to start checking an unannotated program.
Here we assume unannotated references are tainted and Splint will report a warning where
unannotated references are passed to functions that require untainted parameters. The warnings
indicate either a format bug in the code or a place where an untainted annotation should be added.
Running Splint again after adding the annotation will propagate the newly documented
assumption through the program.

The full grammar for metastate definitions is given in Appendix C.

attribute taintedness
 context reference char *
 oneof untainted, tainted
 annotations
 tainted reference ==> tainted
 untainted reference ==> untainted
 transfers
 tainted as untainted ==> error "Possibly tainted storage used where untainted required."
 merge
 tainted + untainted ==> tainted
 defaults
 reference ==> tainted
 literal ==> untainted
 null ==> untainted
end

Figure 22. Taintedness Attribute

Splint Manual

54

10.2 Annotations
The annotations defined by metastate definitions can be used like normal annotations. The
context specifier for an annotation indicates where it may be used. For the taintedness example,
we can use tainted and untainted as annotations wherever only could be used. This includes
ensures and requires clauses, which allows us to specify functions that modify state associated
with metastate definitions. The syntax <expr>:<attribute> is used to refer to the value of the
user-defined attribute for expression <expr>.

It is often necessary to extend the library specifications with metastate annotations. We don’t
want to have different versions of the library for different metastate annotations, so instead Splint
provides a mechanism for adding annotations separately using an .xh file. For the taintedness
example, we do this by providing annotated declarations in the tainted.xh file. Example
specifications in this file include:

int printf (/*@untainted@*/ char *fmt, ...);

char *fgets (char *s, int n, FILE *stream) /*@ensures tainted s@*/ ;

char *strcat (/*@returned@*/ char *s1, char *s2)
 /*@ensures s1:taintedness = s1:taintedness | s2:taintedness @*/

The strcat specification uses /*@ensures s1:taintedness = s1:taintedness | s2:taintedness @*/
to indicate that the taintedness of s1 after strcat returns is the result of merging the taintedness of
s1 and s2 before the call. Because the parameters lack annotations, they are implicitly tainted
according to the default rules and either untainted or tainted references can be passed as
parameters to strcat. The ensures clause means that after strcat returns the first parameter (and the
result, because of the returned annotation on s1) will be tainted if either passed object was
tainted. Splint merges the two taintedness states using the attribute definition rules—hence, if the
s1 parameter is untainted and the s2 parameter is tainted, the result and first parameter will be
tainted after strcat returns.

 UVA Secure Programming Group

55

11 Macros
Macros are commonly used in C programs to implement constants or to mimic functions without
the overhead of a function call. Macros that are used to implement functions are a persistent
source of bugs in C programs, since they may not behave like the intended function when they
are invoked with certain parameters or used in certain syntactic contexts.

Splint eliminates most of the potential problems by detecting macros with dangerous
implementations and dangerous macro invocations. Whether or not a macro definition is checked
or expanded normally depends on flag settings and control comments (see Section 11.3).
Stylized macros can also be used to define control structures for iterating through many values
(see Section 11.4).

11.1 Constant Macros
Macros may be used to implement constants. To get type-checking for constant macros, use the
constant annotation. For example,

/*@constant null char *mstring_undefined@*/

Declared constants are not expanded and are checked according to the declaration. A constant
with a null annotation may be used as only storage.

11.2 Function-like Macros
Using macros to imitate functions is notoriously dangerous. Consider this broken macro for
squaring a number:

define square(x) x * x

This works fine for a simple invocation like square(i). It behaves unexpectedly, though, if it is
instantiated with a parameter that has a side effect. For example, square(i++) expands to i++ *
i++. Not only does this give the incorrect result, it has undefined behavior since the order in
which the operands are evaluated is not defined. (See Section 8.2 for more information on how
expressions exhibiting undefined evaluation order behavior are detected by Splint.) To correct
the problem we either need to rewrite the macro so that its parameter is evaluated exactly once, or
prevent clients from invoking the macro with a parameter that has a side effect.

Another possible problem with macros is that they may produce unexpected results because of
operator precedence rules. The instantiation, square(i+1) expands to i+1*i+1, which evaluates to
i+i+1 instead of the square of i+1. To ensure the expected behavior, the macro parameter should
be enclosed in parentheses where it is used in the macro body.

Macros may also behave unexpectedly if they are not syntactically equivalent to an expression.
Consider the macro definition,

define incCounts() ntotal++; ncurrent++;

This works fine, unless it is used as a statement. For example,
if (x < 3) incCounts();

increments ntotal if x < 3 but always increments ncurrent.

One solution is to use the comma operator to define the macro:

define incCounts() (ntotal++, ncurrent++)

Splint Manual

56

More complicated macros can be written using a do … while construction:
 # define incCounts() \
 do { ntotal++; ncurrent++; } while (FALSE)

Splint detects these pitfalls in macro definitions, and checks that a macro behaves as much like a
function as possible. A client should only be able to tell that a function was implemented by a
macro if it attempts to use the macro as a pointer to a function.

Splint does these checks on a macro definition corresponding to a function:

• Each parameter to a macro (except those declared to be side effect free, see Section 11.2.1)
must be used exactly once in all possible executions of the macro, so side effecting arguments
behave as expected.15 (Controlled by macroparams.)

• A parameter to a macro may not be used as the left-hand side of an assignment expression or
as the operand of an increment or decrement operator in the macro text, since this produces
non-functional behavior. (Controlled by macroassign.)

• Macro parameters must be enclosed in parentheses when they are used in potentially
dangerous contexts. (Controlled by macroparens.)

• A macro definition must be syntactically equivalent to a statement when it is invoked followed
by a semicolon. (Controlled by macrostmt.)

• The type of the macro body must match the return type of the corresponding function. If the
macro is declared with type void, its body may have any type but the macro value may not be
used.

• All variables declared in the body of a macro definition must be in the macro variable
namespace, so they do not conflict with variables in the scope where the macro is invoked
(which may be used in the macro parameters). By default, the macro namespace is all names
prefixed by m_. (See Section 12.2 for information on controlling namespaces.)

At the call site, a macro is checked like any other function call.

11.2.1 Side Effect Free Parameters
Suppose we really do want to implement square as a macro, but want do so in a safe way. One
way to do this is to require that it is never invoked with a parameter that has a side effect. Splint
will check that this constraint holds, if the parameter is annotated to be side effect free. That is,
the expression corresponding to this parameter must not modify any state, so it does not matter
how many times it is evaluated. The sef annotation is used to denote a parameter that may not
have any side effects:
 extern int square (/*@sef@*/ int x);
 # define square(x) ((x) *(x))

Now, Splint will not report an error checking the definition of square even though x is used more
than once.

A message will be reported, however, if square is invoked with a parameter that has a side effect.
For the code fragment,

square (i++)

Splint produces the message:
 Parameter 1 to square is declared sef, but the argument may modify: i++

15 To be completely correct, all the macro parameters should be evaluated before the macro has any side
effects. Splint does not check this.

 UVA Secure Programming Group

57

It is also an error to pass a macro parameter that is not annotated with sef as a sef macro
parameter in the body of a macro definition. For example,
 extern int sumsquares (int x, int y);
 # define sumsquares(x,y) (square(x) + square(y))

Although x only appears once in the definition of sumsquares it will be evaluated twice since
square is expanded.

A parameter may be passed as a sef parameter without an error being reported, if Splint can
determine that evaluating the parameter has no side effects. For function calls, the modifies
clause is used to determine if a side effect is possible.16 To prevent many spurious errors, if the
called function has no modifies clause, Splint will report an error only if sef-uncon is on.
Justifiably paranoid programmers will insist on setting sef-uncon on, and will add modifies
clauses to unconstrained functions that are used in sef macro arguments.

One common application of macros is to get around the lack of polymorphism in C. We can use
the /*@alt <type>,+@> syntax (see Section 4.4) to indicate that an alternate type may be used.
For example,
 extern int /*@alt float@*/ square (/*@sef@*/ int /*@alt float@*/ x);
 # define square(x) ((x) *(x))

declares square for both ints and floats. Note however, that the return type is either int or float,
regardless of the actual parameter type. This is weaker than what is actually known about the
return type.

11.3 Controlling Macro Checking
By default, Splint expands macros normally and checks the resulting code after macros have been
expanded. Flags and control comments may be used to control which macros are expanded and
which are checked as functions or constants.

If the fcn-macros flag is on, Splint assumes all macros defined with parameter lists implement
functions and checks them accordingly. Parameterized macros are not expanded and are checked
as functions with unknown result and parameter types (or using the types in the prototype, if one
is given). The analogous flag for macros that define constants is const-macros. If it is on, macros
with no parameter lists are assumed to be constants, and checked accordingly. The all-macros
flag sets both fcn-macros and const-macros. If the macro-fcn-decl flag is set, a message reports
parameterized macros with no corresponding function prototype. If the macro-const-decl flag is
set, a similar message reports macros with no parameters that have no corresponding constant
declaration.

The macro checks described in the previous sections make sense only for macros that are
intended to replace functions or constants. When fcnmacros or constmacros is on, more general
macros need to be marked so they will not be checked as functions or constants, and will be
expanded normally. Macros that are not meant to behave like functions should be preceded by
the /*@notfunction@*/ comment. For example,
 /*@notfunction@*/
 # define forever for(;;)

16 Functions that do not produce to the same result each time they are called with the same arguments
should be declared to modify internalState so they will lead to errors if they are passed as sef parameters.

Splint Manual

58

Macros preceded by notfunction are expanded normally before regular checking is done. If a
macro that is not syntactically equivalent to a statement without a semi-colon (e.g., a macro
which enters a new scope) is not preceded by notfunction, parse errors may result when fcn-
macros or const-macros is on.

11.4 Iterators
It is often useful to be able to execute the same code for many different values. For example, we
may want to sum all elements in an intSet that represents a set of integers. If intSet is an abstract
type, there is no easy way of doing this in a client module without depending on the concrete
representation of the type. Instead, we could provide such a mechanism as part of the type’s
implementation. We call a mechanism for looping through many values an iterator.

The C language provides no mechanism for creating user-defined iterators. Splint supports a
stylized form of iterators declared using syntactic comments and defined using macros.

Iterator declarations are similar to function declarations except instead of returning a value, they
assign values to their yield parameters in each iteration. For example, we could add this iterator
declaration to intSet.h:

/*@iter intSet_elements (intSet s, yield int el);@*/

The yield annotation means that the variable passed as the second actual argument is declared as a
local variable of type int and assigned a value in each loop iteration.

11.4.1 Defining Iterators
An iterator is defined using a macro. Here’s one (not particularly efficient) way of defining
intSet_elements:
 typedef /*@abstract@*/ struct {
 int nelements;
 int *elements;
 } intSet;
 …
 # define intSet_elements(s,m_el) \
 { int m_i; \
 for (m_i = (0); m_i <= ((s)->nelements); m_i++) { \
 int m_el = (s)->elements[(m_i)];

 # define end_intSet_elements }}

Each time through the loop, the yield parameter m_el is assigned to the next value. After each
value has been assigned to m_el for one iteration, the loop terminates. Variables declared by the
iterator macro (including the yield parameter) are preceded by the macro variable namespace
prefix m_ (see Section 11.2) to avoid conflicts with variables defined in the scope where the
iterator is used.

11.4.2 Using Iterators
The general structure for using an iterator is,

iter (<params>) stmt; end_iter

For example, a client could use intSet_elements to sum the elements of an intSet:
 intSet s;
 int sum = 0;
 ...

 UVA Secure Programming Group

59

 intSet_elements (s, el) {
sum += el;

 } end_intSet_elements;

The actual parameter corresponding to a yield parameter, el, is not declared in the function scope.
Instead, it is declared by the iterator and assigned to an appropriate value for each iteration.

Splint will do the following checks for uses of stylized iterators:

• An invocation of the iterator iter must be balanced by a corresponding end, named end_iter.
• All actual parameters must be defined, except those corresponding to yield parameters.
• Yield parameters must be new identifiers, not declared in the current scope or any enclosing

scope.

Iterators are a bit awkward to implement, but they enable compact, easily understood client code.
For abstract collection types, an iterator can be used to enable clients to operate on elements of
the collection without breaking data abstraction.

Splint Manual

60

12 Naming Conventions
Naming conventions tend to be a religious issue. Generally, it doesn't matter too much what
naming convention is followed as long as one is chosen and followed religiously. There are two
kinds of naming conventions supported by Splint. Type-based naming conventions (Section
12.1) constrain identifier names according to the abstract types that are accessible where the
identifier is defined. Prefix naming conventions (Section 12.2) constrain the initial characters of
identifier names according to what is being declared and its scope. Naming conventions may be
combined or different conventions may be selected for different kinds of identifiers. In addition,
Splint supports checking that names do not conflict with names reserved for the standard library
or implementation (Section 12.3) and are sufficiently distinguishable from other names.

12.1 Type-Based Naming Conventions
Generic naming conventions constrain valid names of identifiers. By limiting valid names,
namespaces may be preserved and programs may be more easily understood since the name gives
clues as to how and where the name is defined and how it should be used.

Names may be constrained by the scope of the name (external, file static, internal), the file in
which the identifier is defined, the type of the identifier, and global constraints.

12.1.1 Czech Names
Czech17 names denote operations and variables of abstract types by preceding the names by
<type>_. The remainder of the name should begin with a lowercase character, but may use any
other character besides the underscore. Types may be named using any non-underscore
characters.

The Czech naming convention is selected by the czech flag. If access-czech is on, a function,
variable, constant or iterator named <type>_<name> has access to the abstract type <type>.
Reporting of violations of the Czech naming convention is controlled by different flags
depending on what is being declared:

czech-fcns
Functions and iterators. An error is reported for a function name of the form
<prefix>_<name> where <prefix> is not the name of an accessible type. Note that if
accessczech is on, a type named <prefix> would be accessible in a function beginning with
<prefix>_. If access-czech is off, an error is reported instead. An error is reported for a
function name that does not have an underscore if any abstract types are accessible where the
function is defined.

czech-vars
czech-constants
czech-macros

17 The most renowned C naming convention is the Hungarian naming convention, introduced by Charles
Simonyi [Simonyi, Charles, and Martin Heller. “The Hungarian Revolution.” BYTE, August 1991, p. 131-
38]. The names for Splint naming conventions follow the tradition of using Central European nationalities
as mnemonics for naming conventions. The Splint conventions are similar to the Hungarian naming
convention in that they encode type information in names, except that the Splint conventions encode the
names of accessible abstract types instead of the type of the declaration of return value. Prefixes used in
the Hungarian naming convention are not supported by Splint.

 UVA Secure Programming Group

61

Variables, constants and expanded macros. An error is reported if the identifier name starts
with <prefix>_ and prefix is not the name of an accessible abstract type, or if an abstract
type is accessible and the identifier name does not begin with <type>_ where type is the
name of an accessible abstract type. If access-czech is on, the representation of the type is
visible in the constant or variable definition.

czech-types
User-defined types. An error is reported if a type name includes an underscore character.

12.1.2 Slovak Names
Slovak names are similar to Czech names, except they are spelled differently. A Slovak name is
of the form <type><Name>. The type prefix may not use uppercase characters. The remainder of
the name starts with the first uppercase character.

The slovak flag selects the Slovak naming convention. Like Czech names, it may be used with
access-slovak to control access to abstract representations. The slovak-fcns, slovak-vars, slovak-
constants, and slovak-macros flags are analogous to the similar Czech flags. If slovak-type is on,
an error is reported if a type name includes an uppercase letter.

12.1.3 Czechoslovak Names
Czechoslovak names are a combination of Czech names and Slovak names. Operations may be
named either <type>_ followed by any sequence of non-underscore characters, or <type>
followed by an uppercase letter and any sequence of characters. Czechoslovak names have been
out of favor since 1993, but may be necessary for checking legacy code. The czechoslovak-fcns,
czechoslovak-vars, czechoslovak-macros, and czechoslovak-constants flags are analogous to the
similar Czech flags. If czechoslovak-type is on, an error is reported if a type name contains either
an uppercase letter or an underscore character.

12.2 Namespace Prefixes
Another way to restrict names is to constrain the leading character sequences of various kinds of
identifiers. For example, the names of all user-defined types might begin with T followed by an
uppercase letter and all file static names begin with an uppercase letter. This may be useful for
enforcing a namespace (e.g., all names exported by the X-windows library should begin with X)
or just making programs easier to understand by establishing an enforced convention. Splint can
be used to constrain identifiers in this way to detect identifiers inconsistent with prefixes.

All namespace flags are of the form, -<context>prefix <string>. For example, the macro variable
namespace restricting identifiers declared in macro bodies to be preceded by m_ would be
selected by -macrovarprefix "m_". The string may contain regular characters that may appear in a
C identifier. These must match the initial characters of the identifier name. In addition, special
characters (shown in Figure 23) can be used to denote a class of characters.18 The * character may
be used at the end of a prefix string to specify the rest of the identifier is zero or more characters
matching the character immediately before the *. For example, the prefix string T&* matches T or
TWINDOW but not Twin.

Different prefixes can be selected for the following identifier contexts:

18 Of course, namespace prefixes should really be described by regular expressions. If there is sufficient
interest (that is, someone volunteers to program it), regular expressions will be supported in a future
version of Splint.

Of course, this
is a complete
jumble to the
uninitiated, and
that’s the joke.

Charles
Simonyi, on the

Hungarian
naming

convention

Splint Manual

62

macro-var-prefix Any variable declared inside a macro body
unchecked-macro-prefix Any macro that is not checked as a function or

constant (see Section 11.4)
tag-prefix Tags for struct, union and enum declarations
enum-prefix Members of enum types
type-prefix Name of a user-defined type
file-static-prefix Any identifier with file static scope
glob-var-prefix Any variable (not of function type) with global scope
const-prefix Any constant (see Section 11.1)
iter-prefix An iterator (see Section 11.4)
proto-param-prefix A parameter in a function declaration prototype
external-prefix Any exported identifier

If an identifier is in more than one of the namespace contexts, the most specific defined
namespace prefix is used (e.g., a global variable is also an exported identifier, so if global-var-
prefix is set, it is checked against the variable name; if not, the identifier is checked against the
external-prefix.)

For each prefix flag, a corresponding flag named <prefixname>exclude controls whether errors
are reported if identifiers in a different namespace match the namespace prefix. For example, if
macro-var-prefix-exclude is on, Splint checks that no identifier that is not a variable declared
inside a macro body uses the macro variable prefix.

Here is a (somewhat draconian) sample naming convention:

-unchecked-macro-prefix "~*" Unchecked macros have no lowercase letters.
-type-prefix "T^&*" All type names begin with T followed by an

uppercase letter. The rest of the name is all
lowercase letters.

+type-prefix-exclude No identifier that does not name a user-defined
type name begins with the type name prefix.

-file-static-prefix "^&&&" File static scope variables begin with an uppercase
letter and three lowercase letters.

-proto-param-prefix "p_" All parameters in prototypes must begin with p_.
-glob-var-prefix "G" All global variables start with G.
+glob-var-prefix-exclude No identifier that is not a global variable starts with

G.

The prefix for parameters in function prototypes is useful for making sure parameter names are
not in conflict with macros defined before the function prototype. In most cases, it may be
preferable to not name prototype parameters. If the proto-param-name flag is set, an error is
reported for any named parameter in a prototype declaration. If a proto-param-prefix is set, no
error is reported for unnamed parameters.

It may also be useful to check the names of prototype parameters correspond to the names in
definitions. While using header files as documentation is not generally recommended, it is
common enough practice that it makes sense to check that parameter names are consistent. A
discrepancy may indicate an error in the parameter order in the function prototype. If proto-
param-match is set, Splint will report an error if the name of a definition parameter does not
match the corresponding prototype parameter (after removing the protoparamprefix).

 UVA Secure Programming Group

63

12.3 Naming Restrictions
Additional naming restrictions can be used to check that names do no conflict with names
reserved for the standard library, and that identifier are sufficiently distinct (either for the
compiler and linker, or for the programmer.) Restrictions may be different for names that are
needed by the linker (external names) and names that are only needed during compilations
(internal names). Names of non-static functions and global variables are external; all other

names are internal.

12.3.1 Reserved Names
Many names are reserved for the implementation and standard library. A complete list of
reserved names can be found in [vdL, p. 126-128]. Some name prefixes such as str followed by
a lowercase character are reserved for future library extensions. Most C compilers do not detect
naming conflicts, and they can lead to unpredictable program behavior. If ansi-reserved is on,
Splint warns about external names that conflict with reserved names. If ansi-reserved-internal is
on, warnings are also produced for internal names.

If +cpp-names is set, Splint warns about identifier names that are keywords or reserved words in
C++. This is useful if the code may later be compiled with a C++ compiler (of course, this is not
enough to ensure the meaning of the code is not changed when it is compiled as C++.)

12.3.2 Distinct Names
Splint can check that names differ within a given number of characters, optionally ignoring
alphabetic case and differences between characters that look similar. The number of significant
characters may be different for external and internal names.

Using +distinct-external-names sets the number of significant characters for external names to six
and makes alphabetical case insignificant for external names. This is the minimum significance
acceptable in an ANSI-conforming compiler. Most modern compilers exceed these minimums
(which are particularly hard to follow if one uses the Czech or Slovak naming convention). The
number of significant characters can be changed using the external-name-length <number> flag.
If external-name-case-insensitive is on, alphabetical case is ignored in comparing external names.
Splint reports identifiers that differ only in alphabetic case.
For internal identifiers, a conforming compiler must recognize at least 31 characters and treat
alphabetical cases distinctly. Nevertheless, it may still be useful to check that internal names are
more distinct then required by the compiler to minimize the likelihood that identifiers are
confused in the program. Analogously to external names, the internal-name-length <number>

^ Any uppercase letter, A-Z
& Any lowercase letter, a-z
% Any character that is not an uppercase letter (allows lowercase letters, digits and

underscore)
~ Any character that is not a lowercase letter (allows uppercase letters, digits and

underscore)
$ Any letter (a-z, A-Z)
/ Any letter or digit (A-Z, a-z, 0-9)
? Any character valid in a C identifier
Any digit, 0-9

Figure 23. Prefix Character Codes

The decision to
retain the old
six-character
case-
insensitive
restriction on
significance
was most
painful.

ANSI C

Splint Manual

64

flag sets the number of significant characters in an internal name and internal-name-case-
insensitive sets the case sensitivity. The internal-name-look-alike flag further restricts distinctions
between identifiers. When set, similar-looking characters match — the lowercase letter l matches
the uppercase letter I and the number 1; the letter O or o matches the number 0; 5 matches S; and
2 matches Z. Identifiers that are not distinct except for look-alike characters will produce an error
message. External names are also internal names, so they must satisfy both the external and
internal distinct identifier checks. Figure 24 provides some examples of distinct name checking.

names.c Running Splint
 char *stringrev (char
*s);

3 int f (int x)
 {
5 int lookalike = 1;
6 int looka1ike = 2;

 if (x > 3)
 {
10 int x = lookalike;
 x += looka1ike;
 }

 return x;
}

> splint names.c +distinctinternalnames
 +internalnamelookalike +isoreserved

names.c:1: Name stringreverse is reserved for future
 library extensions. Functions that begin with
 "str" and a lowercase letter may be added to
 <stdlib.h> or <string.h>. (ISO99:7.26.9)
names.c:6: Internal identifier looka1ike is not
 distinguishable from lookalike except by lookalike
 characters
 names.c:5: Declaration of lookalike
names.c:10: Variable x shadows outer declaration
 names.c:3: Previous declaration of x: int

Figure 24. Distinct Names

 UVA Secure Programming Group

65

13 Completeness
Splint can report warnings for unused declarations and exported declarations that are not used
externally.

13.1 Unused Declarations
Splint detects constants, functions, parameters, variables, types, enumerator members, and
structure or union fields that are declared but never used. The flags constuse, fcnuse, paramuse,
varuse, typeuse, enummemuse and fielduse control whether unused declaration errors are
reported for each kind of declaration. Errors for exported declarations are reported only if topuse
is on (see Section 13.2).

The /*@unused@*/ annotation can be used before a declaration to indicate that the item declared
need not be used. Unused declaration errors are not reported for identifiers declared with unused.

13.2 Complete Programs
Splint can be used on both complete and partial programs. When checking complete programs,
additional checks can be done to ensure that every identifier declared by the program is defined
and used, and that functions that do not need to be exported are declared static.

Splint checks that all declared variables and functions are defined (controlled by compdef).
Declarations of functions and variables that are defined in an external library, may be preceded
by /*@external@*/ to suppress undefined declaration errors.

Splint reports external declarations that are unused (controlled by topuse). Which declarations
are reported also depends on the declaration use flags (Section 13.1). The +partial flag sets flags
for checking a partial system. Top-level unused declarations, undefined declarations, and
unnecessary external names are not reported if +partial is set.

13.2.1 Unnecessarily External Names
Splint can report variables and functions that are declared with global scope (i.e., without using
static), that are not used outside the file in which they are defined. In a stand-alone system, these
identifiers should usually be declared using static to limit their scope. If the export-static flag is
on, Splint will report declarations that could have file scope. It should only be used when all
relevant source files are listed on the Splint command line; otherwise, variables and functions
may be incorrectly identified as only used in the file scope since Splint did not process the other
file in which they are used.

13.2.2 Declarations Missing from Headers
A common practice in C programming styles, is that every function or variable exported by M.c is
declared in M.h. If the export-header flag is on, Splint will report exported declarations in M.c
that are not declared in M.h.

Splint Manual

66

14 Libraries and Header File Inclusion
Libraries can be used to record interface information. A library containing information about the
standard C Library is used to enable checking of library calls. Program libraries can be created to
enable fast checking of single modules in a large program.

14.1 Standard Libraries
In order to check calls to library functions, Splint uses an annotated standard library. This
contains more information about function interfaces then is available in the system header files
since it uses annotations. Further, it contains only those functions documented in the ISO C99
standard. Many systems include extra functions in their system libraries; programs that use these
functions cannot be compiled on other systems that do not provide them. Certain types defined
by the library are treated as abstract types (e.g., a program should not rely on how the FILE type
is implemented). When checking source code, Splint does include system headers corresponding
to files in the library, but instead uses the library description of the standard library.

The Splint distribution includes several different standard libraries: the ANSI standard library, the
POSIX standard library19, and a UNIX library based on the Open Group’s Single Unix
Specification. Each library comes in two versions: the standard version and the strict version.

14.1.1 ISO Standard Library
The default behavior of Splint is to use the ISO standard library (loaded from standard.lcd). This
library is based on the standard library described in the ISO C99 standard.

14.1.2 POSIX Library
The POSIX library is selected by the +posixlib flag. The POSIX library is based on the IEEE Std
1003.1-1990.

14.1.3 UNIX Library

The UNIX library is selected by the +unixlib flag. This library is based on the Open Group’s
Single Unix Specification, Version 2. In the UNIX library, free is declared with a non-null
parameter. ISO specifies that free should handle the argument NULL, but several UNIX platforms
crash if NULL is passed to free.

14.1.4 Strict Libraries
Stricter versions of the libraries are used is the -ansi-strict, posix-strict-lib or unix-strict-lib flag is
used. These libraries use a stricter interpretation of the library. They will detect more errors in
some programs, but may to produce many spurious errors for typical code.

The differences between the standard libraries and the strict libraries are:

• The standard libraries declare the printing functions (fprintf, printf, and sprintf) that may return
error codes to return int or void. This prevents typical programs from leading to deluge of
ignored return value errors, but may mean some relevant errors are not detected. In the strict
library, they are declared to return int, so ignored return value errors will be reported

19 POSIX library was contributed by Jens Schweikhardt.

 UVA Secure Programming Group

67

(depending on other flag settings). Programs should check that this return value is non-
negative.

• The standard libraries declare some parameters and return values to be alternate types (int or
bool, or int or char). The ISO C99 standard specifies these types as int to be compatible with
older versions of the library, but logically they make more sense as bool or char. In the strict
library, the stronger type is used. The parameter to assert is int or bool in the standard library,
and bool in the strict library. The parameter to the character functions isalnum, isalpha, iscntrl,
isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit, tolower and toupper is char
or unsigned char or int in the standard library and char in the strict library. The type of the
return value of the character classification functions (all of the previous character functions
except tolower and toupper) is bool or int in the standard library and bool in the strict library.
The type of the first parameter to ungetc is char or int in the standard library and char in the
strict library (EOF should not be passed to ungetc). The second parameter to strchr and strrchr
is char or int in the standard library and char in the strict library.

• The global variables stdin, stdout and stderr are declared as unchecked variables (see Section
7.2) in the standard libraries. In the strict libraries, they are checked.

• The global variable errno is declared unchecked in the standard libraries, but declared
checkedstrict in the strict libraries.

If no library flag is used, Splint will load the standard library, standard.lcd. If +nolib is set, no
library is loaded. The library source files can easily be modified, and new libraries created to
better suit a particular application.

14.2 Generating Libraries
To enable running Splint on large systems, mechanisms are provided for creating libraries
containing necessary information. This means source files can be checked independently, after a
library has been created. The command line option -dump library stores information in the file
library (the default extension .lcd is added). Then, -load library loads the library. The library
contains interface information from the files checked when the library was created.

14.2.1 Generating the Standard Libraries
The standard libraries are generated from header files included in the Splint distribution. Some
libraries are generated from more than one header file. Since the POSIX library subsumes the
standard library, the headers for the standard and POSIX libraries are combined to produce the
POSIX library. Similarly, the UNIX library is composed of the standard, POSIX and UNIX
headers. The header files include some sections that are conditionally selected by defining
STRICT. The commands to generate the standard libraries are:

splint -nolib ansi.h -dump ansi
splint -nolib -DSTRICT ansi.h -dump ansistrict
splint -nolib ansi.h posix.h -dump posix
splint -nolib -DSTRICT ansi.h posix.h -dump posixstrict
splint -nolib ansi.h posix.h unix.h -dump unix
splint -nolib -DSTRICT ansi.h posix.h unix.h -dump unixstrict

14.3 Header File Inclusion
The standard behavior of Splint on encountering

#include <X.h>

is to search for a file named X.h on the include search path (set using –I) and then the system base
include path (read from the include environment variable if set or using a default value, usually

Splint Manual

68

/usr/include). If X.h is the name of a header file in a loaded standard library and X.h is found in a
directory that is a system directory (as set by the -sysdirs flag; the default is /usr/include), X.h will
not be included if +skip-iso-headers or +skip-posix-headers (depending on whether X.h is an ISO
or POSIX header file) is on (both are on by default). To force all headers to be included
normally, use -skip-iso-headers.

Sometimes headers in system directories contain non-standard syntax that Splint is unable to
parse. The +skip-sys-headers flag may be used to prevent any include file in a system directory
from being included.

Splint is fast enough that it can be run on medium-size (10,000 line) programs without
performance concerns. Libraries can be used to enable efficient checking of small modules in
large programs. To further improve performance, header file inclusion can be optimized.

When processing a complete system in which many files include the same headers, a large
fraction of processing time is wasted re-reading header files unnecessarily. If you are checking a
100-file program, and every file includes utils.h, Splint will have to process utils.h 100 times (as
would most C compilers). If the +single-include flag is used, each header file is processed only
once. Single header file processing produces a significant efficiency improvement when
checking large programs split into many files, but is only safe if the same header file included in
different contexts always has the same meaning (i.e., it does not depend on preprocessor variable
defined differently at different inclusion sites).

When processing a single file in a large system, a large fraction of the time is spent processing
included header files. This can be avoided if the information in the header files is stored in a
library instead. If +never-include is set, inclusion of files ending in .h is prevented. Files with
different suffixes are included normally. To do this the header files must not include any
expanded macros. That is, the header file must be processed with +all-macros, and there must be
no /*@notfunction@*/ control comments in the header. Then, the +never-include flag may be
used to prevent inclusion of header files. Alternately, non-function macros can be moved to a
different file with a name that does not end in .h. Remember, that this file must be included
directly from the .c file, since if it is included from an .h file indirectly, that .h file is ignored so
the other file is never included.

These options can be used for significant performance improvements on large systems. The
performance depends on how the code is structured, but checking a single module in a large
program is several times faster if libraries and +noinclude are used.

14.3.1 Preprocessing Constants
Splint defines the preprocessor constant S_SPLINT_S when preprocessing source files. If you
want to include code that is processed only when Splint is used, surround the code with

ifdef S_SPLINT_S
 …
endif

 UVA Secure Programming Group

69

Appendix A Availability
The web home page for Splint is http://www.splint.org. It includes this guide in HTML format,
samples demonstrating Splint, and links to related web sites. Splint is available as source code
and binary executables for several platforms. Splint may be freely distributed and modified under
the GNU General Public License. The latest development code is available through SourceForge.

Splint development is largely driven by suggestions and comments from users. We are also very
interested in hearing about your experiences using Splint in developing or maintaining programs,
enforcing coding standards, or teaching courses. For general information, suggestions, and
questions on Splint send mail to splint@cs.virginia.edu.

To report a bug in Splint send a message to splint-bug@cs.virginia.edu.

There are two mailing lists associated with Splint:
splint-announce@virginia.edu

Reserved for announcements of new releases and bug fixes. All users should add
themselves to this list.

splint-interest@virginia.edu
Informal discussions on the use and development of Splint.

To subscribe to a mailing list, send a message to majordomo@virginia.edu containing the body
subscribe splint-announce or subscribe splint-interest.

Splint Manual

70

Appendix B Flags
There are four different types of flags:

• Global flags for controlling initializations and global behavior
• Message format flags for controlling how messages are displayed
• Mode selectors for coarse control of Splint checking
• Checking flags that control checking and what classes of messages are reported.

Global flags can be used in initialization files and at the command line; all other flags may also be
used in control comments.

Key
To the left of flags that are set locally, is a flag descriptor encoding what kind of flag it is and its
default value. The descriptions are:

A plain flag. The value after the colon gives the default setting (e.g., this flag is off.)

A mode checking flag. The value of the flag is set by the mode selector. The four signs give the
setting in the weak, standard, checks and strict modes. (e.g., this flag is off in the weak and
standard modes, and on in the checks and strict modes.)

A shortcut flag. This flag sets other flags, so it has no default value.

Flag Name Abbreviations
Within a flag name, abbreviations may be used. Figure 25 shows the flag name abbreviations.

The expanded and short forms are interchangeable in flag names.

For example, globsimpmodsnothing and globalsimpliesmodifiesnothing denote the same flag.
Abbreviations in flag names allow pronounceable, descriptive names to be used without making
flag names excessively long (although one must admit even globsimpmodsnothing is a bit of a
mouthful.)

P: -

m:--++

shortcut

Expanded Form Short Form
constant const
declaration decl
function fcn
global glob
implicit, implied imp
iterator iter
length len
modifies mods
modify mod
memory mem
parameter param
pointer ptr
return ret
variable var
unconstrained, unconst uncon

Figure 25. Flag Name Abbreviations

 UVA Secure Programming Group

71

To make flag names more readable, the space, dash (-), and underscore (_) characters may be
used inside a flag name. Hence, globals-implies-modifies-nothing, glob_imps_modsnothing and
globsimpmodsnothing are equivalent.

Global Flags
Global flags can be set at the command line or in an options file, but cannot be set locally using
stylized comments. These flags control on-line help, initialization files, pre-processor flags,
libraries and output.

Help
On-line help provides documentation on Splint operation and flags. When a help flag is used, no
checking is done by Splint. Help flags may be preceded by - or +.

help
Display general help overview, including list of additional help topics.

help <topic>
Display help on <topic>. Available topics:

Annotations describe annotations
Comments describe control comments
flags describe flag categories
flags <category> all flags pertaining to <category> (one of the categories

listed by splint -help flags)
flags alpha all flags in alphabetical order
flags full print a full description of all flags
mail print information on mailing lists
modes flags settings in modes
prefixcodes Character codes for setting namespace prefixes
references print references to relevant papers and web sites
vars describe environment variables
version print maintainer and version information

help <flag>
Describe flag <flag>. (May list several flags.)

warn-flags
Display a warning when a flag is set in a surprising way. An error is reported if an
obsolete flag is set, a flag is set to its current value (i.e., the + or - may be wrong), or a
mode selector flag is set after mode checking flags that will be reset by the mode were set.
By default, +warn-flags is on. To suppress flag warnings, use -warn-flags.

warn-rc
There was a problem reading an initialization file

bad-flag
A flag is not recognized or used in an incorrect way

fileextensions
Warn when command line file does not have a recognized extension.

Initialization
These flags control directories and files used by Splint. They may be used from the command
line or in an options file, but may not be used as control comments in the source code. Except
where noted. they have the same meaning preceded by - or +.

tmpdir <directory>

P: +

P: +

P: +

Splint Manual

72

Set directory for writing temp files. Default is /tmp/.
I<directory>

Add directory to path searched for C include files. Note there is no space after the I, to be
consistent with C preprocessor flags.

S<directory>
Add directory to path search for .lcl specification files.

larchpath <path>
Set path to search for library files. Overrides LARCH_PATH environment variable.

lclimportdir <directory>
Set directory to search for LCL import files. Overrides LCLIMPORTDIR environment
variable.

f <file>
Load options from <file>. If this flag is used from the command line, the default ~/.splintrc
file is not loaded. This flag may be used in an options file to include another options file.

i <file>
Set LCL initilization file.

nof
Prevents the default options files (./.splintrc and ~/.splintrc) from being loaded. (Setting -
nof overrides +nof, causing the options files to be loaded normally.)

sys-dirs
Set directories for system files (default is /usr/). Separate directories with the path
separator for your operating system (e.g., semi-colons for Windows or colons for Unix:
/usr/include:/usr/local/lib). Flag settings propagate to files in a system directory. If -sys-
dir-errors is set, no errors are reported for files in system directories.

Pre-processor
These flags are used to define or undefine pre-processor constants. The -I<directory> flag is also
passed to the C pre-processor.

D<initializer>
Passed to the C pre-processor.

U<initializer>
Passed to the C pre-processor.

unrecogdirective
Preprocessor directive is not recognized.

preproc
Preprocessing error.

Libraries
These flags control the creation and use of libraries.

dump <file>
Save state in <file> for loading. The default extension .lcd is added if <file> has no
extension.

load <file>
Load state from <file> (created by -dump). The default extension .lcd is added if <file>
has no extension. Only one library file may be loaded.

P: +

P: +

 UVA Secure Programming Group

73

By default, the standard library is loaded if the -load flag is not used to load a user library. If no
user library is loaded, one of the following flags may be used to select a different standard library.
Precede the flag by + to load the described library (or to prevent a library from being loaded
using no-lib). See Section 14.1 for information on the provided libraries.

no-lib
Do not load any library. This prevents the standard library from being loaded.

ansi-lib
Use the ANSI standard library (selected by default).

strict-lib
Use strict version of the ANSI standard library.

posix-lib
Use the POSIX standard library.

posix-strict-lib
Use the strict version of the POSIX standard library.

unix-lib
Use UNIX version of standard library.

unix-strict-lib
Use the strict version of the UNIX standard library.

iso-lib
Use library based on the ISO standard library specification.

warn-unix-lib
Warn when the unix library is used. Unix library may not be compatible with all
platforms.

which-lib
Print out the standard library filename and creation information.

newdecl

There is a new declaration that is not declared in a loaded library or
 earlier file. (Use this flag to check for consistency against a library.)

impconj
Make all alternate types implicit (useful for making system libraries).

Output
These flags control what additional information Splint prints. Setting +<flag> causes the
described information to be printed; setting -<flag> prevents it. By default, all these flags are off.

use-stderr
Send error messages to standard error (instead of standard output).

show-summary
Show a summary of all errors reported and suppressed. Counts of suppressed errors are not
necessarily correct since turning a flag off may prevent some checking from being done to
save computation, and errors that are not reported may propagate differently from when
they are reported.

show-scan
Show file names are they are processed.

show-all-uses
Show list of uses of all external identifiers sorted by number of uses.

stats
Display number of lines processed and checking time.

time-dist

P: -

P: -

Splint Manual

74

Display distribution of where checking time is spent.
quiet

Suppress herald and error count. (If quiet is not set, Splint prints out a herald with version
information before checking begins, and a line summarizing the total number of errors
reported.)

which-lib
Print out the standard library filename and creation information.

limit <number>
At most <number> similar errors are reported consecutively. Further errors are
suppressed, and a message showing the number of suppressed messages is printed.

message-stream <file>
Send status messages to <file>.

message-stream-stdout
Send status messages to standard output stream.

message-stream-stderr
Send status messages to standard error stream.

warning-stream <file>
Send warnings to <file>.

warning-stream-stdout
Send warnings to standard output stream.

warning-stream-stderr
Send warnings to standard error stream.
error-stream <file>

Send fatal errors to <file>.
error-stream-stdout

Send fatal errors to standard output stream.
error-stream-stderr

Send fatal errors to standard error stream.

Expected Errors
Normally, Splint will expect to report no errors. The exit status will be success (0) if no errors
are reported, and failure if any errors are reported. Flags can be used to set the expected number
of reported errors. Because of the provided error suppression mechanisms, these options should
probably not be used for final checking real programs but may be useful in developing programs
using make.

expect <number>
Exactly <number> code errors are expected. Splint will exit with failure exit status unless
<number> code errors are detected.

Message Format
These flags control how messages are printed. They may be set at the command line, in options
files, or locally in syntactic comments. The line-len and limit flags may be preceded by + or -
with the same meaning; for the other flags, + turns on the describe printing and - turns it off. The
box to the left of each flag gives its default value.

show-column
Show column number where error is found.

show-func

+

+

 UVA Secure Programming Group

75

Show name of function (or macro) definition containing error. The function name is
printed once before the first message detected in that function.

show-all-conjs
Show all possible alternate types (see Section 4.4).

paren-file-format
Use <file>(<line>) format in messages. (Default is + for Win32 for compatibility with
Microsoft VisualStudio.)

hints
Provide hints describing an error and how a message may be suppressed for the first error
reported in each error class.

force-hints
Provide hints for all errors reported, even if the hint has already been displayed for the
same error class.

line-len <number>
Set length of maximum message line to <number> characters. Splint will split messages
longer than <number> characters long into multiple lines.

indentspaces <number>
Set number of spaces to indent sub-messages.

locindentspaces <number>
Set number of spaces to indent sub-messages that start with file locations.

showdeephistory
Show all available information about storage mentioned in warnings.

showloadloc
Show location information for load files.

csv
Produce comma-separated values (CSV) warnings output file.

csvoverwrite
Overwrite exisiting CVS output file Show location information for load files.

htmlfileformat
Show file locations as links.

streamoverwrite
Warn and exit if a stream output file would overwrite an existing file.

Mode Selector Flags
Mode selects flags set the mode checking flags to predefined values. They provide a quick
coarse-grain way of controlling what classes of errors are reported. Specific checking flags may
be set after a mode flag to override the mode settings. Mode flags may be used locally, however
the mode settings will override specific command line flag settings. A warning is produced if a
mode flag is used after a mode checking flag has been set.

These are brief descriptions to give a general idea of what each mode does. To see the complete
flag settings in each mode, use splint -help modes. A mode flag has the same effect when used
with either + or -.

weak
Weak checking, intended for typical unannotated C code. No modifies checking, macro
checking, rep exposure, or clean interface checking is done. Return values of type int may
be ignored. The types bool, int, char and user-defined enum types are all equivalent. Old
style declarations are unreported.

standard

-

-

+

-

80

3

3

-

-

-

-

-

+

Splint Manual

76

The default mode. All checking done by weak, plus modifies checking, global, alias
checking, use all parameters, using released storage, ignored return values or any type,
macro checking, unreachable code, infinite loops, and fall through cases. The types bool,
int and char are distinct. Old style declarations are reported.

 checks
Moderately strict checking. All checking done by standard, plus must modification
checking, rep exposure, return alias, memory management and complete interfaces.

strict
Absurdly strict checking. All checking done by checks, plus modifications and global
variables used in unspecified functions, strict standard library, and strict typing of C
operators. A special reward will be presented to the first person to produce a real program
that produces no errors with strict checking.

Checking Flags
These flags control checking done by Splint. They may be set locally using syntactic comments,
from the command line, or in an options file. Some flags directly control whether a certain class
of message is reported. Preceding the flag by + turns reporting on, and preceding the flag by -
turns reporting off. Other flags control checking less directly by determining default values (what
annotations are implicit), making types equivalent (to prevent certain type errors), controlling
representation access, etc. For these flags, the effect of + is described, and the effect of - is the
opposite (or explicitly explained if there is no clear opposite). The organization of this section
mirrors Sections 2-14.

Null Dereferences (Section 2)
null

A possibly null pointer may be dereferenced, or used somewhere a non-null pointer is
expected. (sets nullderef, nullpass, nullref, nullassign, and nullstate).

nullderef
A possibly null pointer is dereferenced. Value is either the result of a function which may
return null (in which case, code should check it is not null), or a global, parameter or
structure field declared with the null qualifier.

nullpass
A possibly null pointer is passed as a parameter corresponding to a formal parameter with
no /*@null@*/ annotation. If NULL may be used for this parameter, add a /*@null@*/
annotation to the function parameter declaration.

nullret
Function returns a possibly null pointer, but is not declared using /*@null@*/ annotation
of result. If function may return NULL, add /*@null@*/ annotation to the return value
declaration.

nullstate
A possibly null pointer is reachable from a parameter or global variable that is not declared
using a /*@null@*/ annotation.

nullassign
A reference with no null annotation is assigned or initialized to NULL. Use /*@null@*/
to declare the reference as a possibly null pointer.

Use Before Definition (Section 3)
usedef

shortcut

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

 UVA Secure Programming Group

77

The value of a location that may not be initialized on some execution path is used.
imp-outs

Allow unannotated pointer parameters to functions to be implicit out parameters.
compdef

Storage derivable from a parameter, return value or global variable is not completely
defined.

uniondef
No field of a union is defined. (No error is reported if at least one union field is defined.)

mustdefine
Parameter declared with out is not defined before return or scope exit.

fullinitblock

Initializer does not set every field in the structure.
initallelements

Initializer does not define all elements of a declared array.
initsize

Initializer block contains more elements than the size of a declared array.

impouts

Pointer parameters to unspecified functions may be implicit out parameters.

Declarations
incondefs

A function, variable or constant is redefined with a different type.

functionderef
A function type is dereferenced. The ANSI standard allows this because of implicit
conversion of function designators, however the dereference is unnecessary.

redundantsharequal
A declaration of an immutable object uses a redundant observer qualifier.

misplacedsharequal
A declaration of an unsharable object uses a sharing annotation.

Types (Section 4)
type

Type mismatch.

string-literal-too-long
A string literal is assigned to a char array too small to hold it.

string-literal-no-room
A string literal is assigned to a char array that is not big enough to hold the null terminator.

string-literal-no-room-final-null
A string literal is assigned to a char array that is not big enough to
 hold the final null terminator. This may not be a problem because a null
 character has been explictedly included in the string literal using an
 escape sequence.

string-literal-smaller

m:----

m:-+++

m:-+++

m:-+++

P: +

P: +

P: +

m:----

m:-+++

m:--++

m:--++

m:-+++

P: +

P: +

m:-+++

m:++++

m:--++

Splint Manual

78

A string literal is assigned to a char array that smaller than the string literal needs.

enum-members
Type of initial values for enum members must be int.

Boolean Types (Section 4.2)
These flags control the type name used to represent Booleans, and whether the Boolean type is
abstract.

bool

Boolean type is an abstract type.
booltype <name>

Set name of Boolean type to <name>.
boolfalse <name>

Set name of Boolean false to <name>.
booltrue <name>

Set name of Boolean true to <name>.
likelybool

Splint has found a type which appears to be the boolean type. Use the -booltype, -
boolfalse and -booltrue flags to change the name of the default boolean type.

Predicates
pred-bool-ptr

Type of condition test is a pointer.
pred-bool-int

Type of condition test is an integral type.
pred-bool-others

Type of condition test is not a Boolean, pointer or integral type.
pred-bool

Sets predboolint, predboolptr and preboolothers.
pred-assign

The condition test is an assignment expression. If an assignment is intended, add an extra
parentheses nesting (e.g., if ((a = b)) ...).

Primitive Operations
ptr-arith

Arithmetic involving pointer and integer.
nullptrarith

Pointer arithmetic using a possibly null pointer and integer.

boolops
The operand of a boolean operator is not a boolean. Use +ptrnegate to allow ! to be used on
pointers.

ptr-negate
Allow the operand of the ! operator to be a pointer.

bitwise-signed
An operand to a bitwise operator is not an unsigned value. This may have unexpected
results depending on the signed representations.

shiftimplementation

m:--++

P: -

P: bool

P:FALSE

P: TRUE

P: +

m:--++

m:-+++

m:++++

shortcut

P: +

m:---+

m:--++

m:++--

m:++--

m:---+

m:---+

 UVA Secure Programming Group

79

The left operand to a shift operator may be negative (behavior is implementation-defined).
shiftnegative

The right operand to a shift operator may be negative (behavior undefined).
shift-signed

The left operand to a shift operator is not an unsigned value.
strict-ops

Primitive operation does not type check strictly.
sizeof-type

Operand of sizeof operator is a type. (Safer to use int *x = sizeof (*x); instead of sizeof
(int).)

Array Formal Parameters
These flags control reporting of common errors caused by confusion about the semantics of array
formal parameters.

sizeof-formal-array

The sizeof operator is used on a parameter declared as an array. (In many instances this
has unexpected behavior, since the result is the size of a pointer to the element type, not the
number of elements in the array.)

fixed-formal-array
An array formal parameter is declared with a fixed size (e.g., int x[20]). This is likely to be
confusing, since the size is ignored.

formal-array
A formal parameter is declared as an array. This is probably not a problem, but can be
confusing since it is treated as a pointer.

Format Codes
format-code

Invalid format code in format string for printflike or scanflike function.
format-type

Type-mismatch in parameter corresponding to format code in a printflike or scanflike
function.

format-const
Format parameter is not known at compile-time. This can lead to security vulnerabilities
because the arguments cannot be type checked.

Main
main-type

Type of main does not match expected type (function returning an int, taking no parameters
or two parameters of type int and char **.)

Comparisons
bool-compare

Comparison between Boolean values. This is dangerous since there may be multiple true
values as any non-zero value is interpreted as true.

real-compare
Comparison involving float or double values. This is dangerous since it may produce
unexpected results because floating point representations are inexact.

ptr-compare

m:-+++

m:-+++

m:---+

m:---+

P: +

P: +

P: -

P: +

P: +

P: +

P: +

m:-+++

m:-+++

m:-+++

Splint Manual

80

Comparison between pointer and number.
unsigned-compare

An unsigned value is used in a comparison with zero in a way that is either a bug or
confusing.

Type Equivalence
void-abstract

Allow void * to match pointers to abstract types. (Casting a pointer to an abstract type to a
pointer to void is okay if +void-abstract is set.)

cast-fcn-ptr
 A pointer to a function is cast to (or used as) a pointer to void (or vice versa).

forward-decl
Forward declarations of pointers to abstract representation match abstract type.

imp-type
A variable declaration has no explicit type. The type is implicitly int.

incomplete-type
A formal parameter is declared with an incomplete type (e.g., int[][]).

char-index
Allow char to index arrays.

enum-index
Allow members of enum type to index arrays.

bool-int
Make bool and int are equivalent. (No type errors are reported when a Boolean is used
where an integral type is expected and vice versa.)

char-int
Make char and int types equivalent

charunsignedchar
To allow char and unsigned char types to match use +charunsignedchar.

enum-int
Make enum and int types equivalent

float-double
Make float and double types equivalent

ignore-quals
Ignore type qualifiers (long, short, unsigned).

relax-quals
Report qualifier mismatches only if dangerous (information may be lost since a larger type
is assigned to (or passed as) a smaller one or a comparison uses signed and unsigned
values.)

ignore-signs
Ignore signs in type comparisons (unsigned matches signed).

long-integral
Allow long type to match an arbitrary integral type (e.g., dev_t).

long-unsigned-integral
Allow unsigned long type to match an arbitrary integral type (e.g., dev_t).

match-any-integral
Allow any integral type to match an arbitrary

long-unsigned-unsigned-integral
Allow unsigned long type to match an arbitrary unsigned integral type (e.g., size_t).

long-signed-integral
Allow long type to match an arbitrary signed integral type (e.g., ssize_t).

m:-+++

m:+---

P: +

m:+---

m:-+++

P: +

m:+---

m:----

m:+---

m:+---

m:+---

m:++--

m:+---

m:----

m:++--

m:----

P: -

m:+---

P: -

P: -

m:+---

 UVA Secure Programming Group

81

num-literal

Integer literals can be used as floats.
char-int-literal

A character constant may be used as an int.
zero-ptr

Literal 0 may be used as a pointer.
zero-bool

Treat 0 as a boolean.
relax-types

Allow all numeric types to match.
shortint

Make short int and int types equivalent.

Abstract Types (Section 4.3)
abstract

A data abstraction barrier is violated
imp-abstract

Implicit abstract annotation for type declarations that do not use concrete.
mut-rep

Representation of mutable type has sharing semantics.

Access (Section 4.3.1)
access-module

An abstract type defined in M.h (or specified in M.lcl) is accessible in M.c.
access-file

An abstract type named type is accessible in files named type.*
access-czech

An abstract type named type may be accessible in a function named type_name. (Section
12.1.1)

access-slovak
An abstract type named type may be accessible in a function named typeName.
(Section.12.1.2)

access-czechoslovak
An abstract type named type may be accessible in a function named type_name or
typeName. (Section 12.1.3)

access-all
Sets access-module, access-file and access-czech.

Memory Management (Section 5)
Reporting of memory management errors is controlled by flags setting checking and implicit
annotations and code annotations.

Deallocation Errors (Section 5.2)
use-released

Storage used after it may have been released.
strict-use-released

An array element used after it may have been released.

P: +

P: -

P: +

P: +

P: -

m:+---

P: +

P: -

m:-+++

P: +

P: +

P: +

P: -

P: -

shortcut

m:-+++

m:---+

Splint Manual

82

Inconsistent Branches
branch-state

Storage has inconsistent states of alternate paths through a branch (e.g., it is released in the
true branch of an if-statement, but there is no else branch.)

strict-branch-state
Storage through array fetch has inconsistent states of alternate paths through a branch.
Since array elements are not checked accurately, this may lead to spurious errors.

dep-arrays
Treat array elements as dependent storage. Checking of array elements cannot be done
accurately by Splint. If dep-arrays is not set, array elements are assumed to be
independent, so code that releases the same element more than once will produce no error.
If dep-arrays is set, array elements are assumed to be dependent, so code that releases the
same element more that once will produce an error, but code that releases different
elements correctly will produce a spurious error.

Memory Leaks
must-free

Allocated storage was not released before return or scope exit. Errors are reported for only,
fresh or owned storage.

mustfreefresh
Allocated storage was not released before return or scope exit. Errors are reported for
fresh storage

mustfreeonly
Allocated storage was not released before return or scope exit. Errors are reported for only
storage

memchecks
Sets all dynamic memory checking flags (memimplicit, mustfree, mustdefine,
mustnotalias, null, memtrans).

comp-destroy
All only references derivable from out only parameter of type void * must be released.
(This is the type of the parameter to free, but may also be used for user-defined
deallocation functions.)

strict-destroy
Report complete destruction errors for array elements that may have been released. (If
strict-destroy is not set, Splint will assume that if any array element was released, the entire
array was correctly released.)

Transfer Errors
A transfer error is reported when storage is transferred (by an assignment, passing a parameter, or
returning) in a way that is inconsistent.

mem-trans
Sets all memory transfer errors flags.

only-trans
Only storage transferred to non-only reference (memory leak).

ownedtrans
Owned storage transferred to non-owned reference (memory leak).

fresh-trans
Newly-allocated storage transferred to non-only reference (memory leak).

shared-trans
Shared storage transferred to non-shared reference

m:-+++

m:---+

m:--++

m:-+++

m:-+++

m:-+++

shortcut

m:-+++

m:---+

shortcut

m:-+++

m:-+++

m:-+++

m:-+++

 UVA Secure Programming Group

83

dependent-trans
Inconsistent dependent transfer. Dependent storage is transferred to a non-dependent
reference.

temp-trans
Temporary storage (associated with a temp formal parameter) is transferred to a non-
temporary reference. The storage may be released or new aliases created.

kept-trans
Kept storage (storage what was passed as keep) transferred to non-temporary reference.

keep-trans
Keep storage is transferred in a way that may add a new alias to it, or release it.

refcount-trans
Reference counted storage is transferred in an inconsistent way.

newref-trans
A new reference transferred to a reference counted reference (reference count is not set
correctly).

immediate-trans
An immediate address (result of &) is transferred inconsistently.

static-trans
Static storage is transferred in an inconsistent way.

expose-trans
Inconsistent exposure transfer. Exposed storage is transferred to a non-exposed, non-
observer reference.

observer-trans
Inconsistent observer transfer. Observer storage is transferred to a non-observer reference.

unqualified-trans
Unqualified storage is transferred in an inconsistent way.

Initializers
only-unq-global-trans

Only storage transferred to an unqualified global or static reference. This may lead to a
memory leak, since the new reference is not necessarily released.

static-init-trans
Static storage is used as an initial value in an inconsistent way.

unqualified-init-trans
Unqualified storage is used as an initial value in an inconsistent way.

Derived Storage
comp-mem-pass

Storage derivable from a parameter does not match the alias kind expected for the formal
parameter.

Stack References
stack-ref

A stack reference is pointed to by an external reference when the function returns. Since
the call frame will be destroyed when the function returns the return value will point to
dead storage. (Section 5.2.6)

Implicit Memory Annotations (Section 5.3)
all-imp-only

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:--++

m:--++

m:--++

m:-+++

m:++++

shortcut

Splint Manual

84

Sets glob-imp-only, ret-imp-only, struct-imp-only, specglobimponly, specretimponly and
specstructimponly.

glob-imp-only
Assume unannotated global storage is only.

param-imp-temp
Assume unannotated parameter is temp.

ret-imp-only
Assume unannotated returned storage is only.

struct-imp-only
Assume unannotated structure or union field is only.

code-imp-only
Sets glob-imp-only, ret-imp-only and struct-imp-only.

mem-imp
Report memory errors for unqualified storage.

pass-unknown
Passing a value as an unannotated parameter clears its annotation. This will prevent many
spurious errors from being report for unannotated programs, but eliminates the possibility
of detecting many errors.

Sharing (Section 6)

Aliasing (Section 6.1)
alias-unique

An actual parameter that is passed as a unique formal parameter is aliased by another
parameter or global variable.

may-alias-unique
An actual parameter that is passed as a unique formal parameter may be aliased by another
parameter or global variable.

must-not-alias
An alias has been added to a temp-qualifier parameter or global that is visible externally
when the function returns.

ret-alias
A function returns an alias to parameter or global.

Exposure (Section 6.2)
rep-expose

The internal representation of an abstract type is visible to the caller. This means clients
may have access to a pointer into the abstract representation. (Sets assign-expose, ret-
expose, and cast-expose.)

assign-expose
Abstract representation is exposed by an assignment or passed parameter.

cast-expose
Abstract representation is exposed through a cast.

ret-expose
Abstract representation is exposed by a return value.

Observer Modifications
mod-observer

Possible modification of observer storage.
mod-observer-uncon

P: +

P: +

P: +

P: +

shortcut

m:-+++

m:----

m:-+++

m:-+++

m:-+++

m:--++

shortcut

m:--++

m:--++

m:--++

P: +

m:---+

 UVA Secure Programming Group

85

Storage declared with observer may be modified through a call to an unconstrained
function.

String Literals (Section 6.2.1)
read-only-trans

Report memory transfer errors for initializations to read-only string literals
read-only-strings

String literals are read-only (ISO semantics). An error is reported if a string literal may be
modified or released.

Function Interfaces (Section 7)

Modification (Section 7.1)
modifies

Undocumented modification of caller-visible state. Without +moduncon, modification
errors are only reported in the definitions of functions declared with a modifies clause (or
specified).

must-mod
Documented modification is not detected. An object listed in the modifies clause for a
function, is not modified by the implementation.

mod-uncon
Report modification errors in functions declared without a modifies clause.(Sets mod-
nomods, mod-globs-nomods and mod-strict-globs-nomods.)

mod-nomods
Report modification errors (not involving global variables) in functions declared without a
modifies clause.

mod-uncon-nomods
An unconstrained function is called in a function body where modifications are checked.
Since the unconstrained function may modify anything, there may be undetected
modifications in the checked function.

mod-internal-strict
A function that modifies internalState is called from a function that does not list
internalState in its modifies clause.

mod-file-sys
A function modifies the file system but does not list fileSystem in its modifies clause.

Global Variables (Section 7.2)
Errors involving the use and modification of global and file static variables are reported
depending on flag settings, annotations where the global variable is declared, and whether or not
the function where the global is used was declared with a globals clause.

globs
Undocumented use of a checked global variable in a function with a globals list.

glob-use
A global listed in the globals list is not used in the implementation.

glob-noglobs
Use of a checked global in a function with no globals list.

internal-globs
Undocumented use of internal state (should have globals internalState).

internal-globs-noglobs
 Use of internal state in function with no globals list.

m:--++

m:-+++

P: +

m:--++

shortcut

m:---+

m:---+

m:---+

m:---+

P: +

m:++++

m:---+

m:---+

m:---+

Splint Manual

86

glob-state
A function returns with global in inconsistent state (null or undefined)

all-globs
Report use and modification errors for globals not annotated with unchecked.

check-strict-globs
Report use and modification errors for checkedstrict globals.

Modification of Global Variables
mod-globs

Undocumented modification of a checked global variable.
mod-globs-unchecked

Undocumented modification of an unchecked global variable.
mod-globs-nomods

Undocumented modification of a checked global variable in a function with no modifies
clause.

mod-strict-globs-nomods
Undocumented modification of a checkedstrict global variable in a function declared with
no modifies clause.

Globals Lists and Modifies Clauses
warn-missing-globs

Global variable used in modifies clause is not listed in globals list. (The global is added to
the globals list.)

warn-missing-globs-noglobs
Global variable used in modifies clause of a function with no globals list.

globs-imp-mods-nothing
A function declared with a globals list but no modifies clause is assumed to modify
nothing.

mods-imp-noglobs
A function declared with a modifies clause but no globals list is assumed to use no globals.

Implicit Checking Annotations
imp-checked-globs

Implicit checked annotation on global variables with no checking annotation.
imp-checked-statics

Implicit checked qualifier file static scope variables with no checking annotation.
imp-checkmod-globs

Implicit checkmod qualifier on global variables with no checking annotation.

imp-checkmod-statics
Implicit checkmod qualifier file static scope variables with no checking annotation.

imp-checkedstrict-globs
Implicit checked qualifier on global variables with no checking annotation.

imp-checkedstrict-statics
Implicit checked qualifier file static scope variables with no checking annotation.

imp-checkmod-internals
Implicit checkmod qualifier on function scope static variables with no checking annotation.

Global Aliasing
glob-alias

m:-+++

m:--++

m:++++

m:-+++

m:---+

m:---+

m:---+

m:---+

m:---+

m:--++

m:----

m:----

m:----

m:----

m:----

m:---+

m:---+

m:--++

m:-+++

shortcut

 UVA Secure Programming Group

87

Function returns with global aliasing external state (sets checkstrict-glob-alias, checked-
glob-alias, checkmod-glob-alias and unchecked-glob-alias).

checkstrict-glob-alias
Function returns with a checkedstrict global aliasing external state.

checked-glob-alias
Function returns with a checked global aliasing external state.

checkmod-glob-alias
Function returns with a checkmod global aliasing external state.

unchecked-glob-alias
Function returns with an unchecked global aliasing external state.

Declaration Consistency (Section 7.3)
incon-defs

Identifier redeclared or redefined with inconsistent type.
incon-defs-lib

Identifier defined in a library is redefined with inconsistent type.
overload

Standard library function overloaded.
match-fields

A struct or enum type is redefined with inconsistent fields or members.

Macros (Section 11)
These flags control expansion and checking of macro definitions and invocations.

Macro Expansion
These flags control which macros are checked as functions or constants, and which are expanded
in the pre-processing phase. Macros preceded by /*@notfunction@*/ are never expanded
regardless of these flag settings. These flags may be used in source-file control comments.

fcn-macros
Macros defined with parameter lists are not expanded and are checked as functions.

const-macros
Macros defined without parameter lists are not expanded and are checked as constants.

all-macros
Sets fcn-macros and const-macros.

lib-macros
Macros defining identifiers declared in a loaded library are not expanded and are checked
according to the library information.

Macro Definitions
These flags control what errors are reported in macro definitions.

macro-stmt
Macro definition is not syntactically equivalent to function. This means if the macro is
used as a statement (e.g., if (test) macro();) unexpected behavior may result. One fix is to
surround the macro body with do { … } while (FALSE).

macro-return
The body of a macro declared as a function uses a return statement. This exhibits behavior
that could not be implemented by a function.

macro-assign
A macro parameter is used as the left side of an assignment expression.

m:-+++

m:-+++

m:-+++

m:--++

m:-+++

m:-+++

m:----

m:-+++

P: -

P: -

shortcut

P: -

m:-+++

m:-+++

m:-+++

Splint Manual

88

macro-parens
A macro parameter is used without parentheses (in potentially dangerous context).

macro-empty
Macro definition of a function is empty.

macro-redef
Macro is redefined. There is another macro defined with the same name.

macro-unrecog
An unrecognized identifier appears in a macro definition. Since the identifier may be
defined where the macro is used, this could be okay, but Splint will not be able to check
the unrecognized identifier appropriately.

Corresponding Declarations
macro-match-name

An iter or constant macro is defined using a different name from the one used in the
previous syntactic comment

macro-decl
A macro definition has no corresponding declaration. (Sets macrofcndecl and
macroconstdecl.)

macro-fcn-decl
Macro definition with parameter list has no corresponding function prototype. Without a
prototype, the types of the macro result and parameters are unknown.

macro-const-decl
A macro definition without parameter list has no corresponding constant declaration.

next-line-macros
A constant or iter declaration is not immediately followed by a macro definition.

Side Effect Free Parameters (Section 11.2.1)
These flags control error reporting for parameters with inconsistent side effects in invocations of
checked function macros and function calls.

sef-params
An actual parameter with side effects is passed as a formal parameter declared with sef.

sef-uncon
An actual parameter involving a call to an unconstrained function (declared without
modifies clause) that may modify anything is passed as a sef parameter.

Iterators

iterbalance

Iter is not balanced with end_<iter>.
iteryield

Iter yield parameter is inappropriate.
has-yield

An iterator has been declared with no parameters annotated with yield.

Naming Conventions (Section 12)
name-checks

Turns all name checking on or off without changing other settings.

m:-+++

m:---+

m:-+++

m:-+++

m:++++

shortcut

m:-+++

m:-+++

P: +

m:-+++

m:--++

P: +

P: +

P: -

P: +

 UVA Secure Programming Group

89

Type-Based Naming Conventions (Section 12.1)

Czech Naming Convention
czech

Selects complete Czech naming convention (sets access-czech, czech-fcns, czech-vars,
czech-consts, czech-macros, and czech-types).

access-czech
Allow access to abstract types following Czech naming convention. The representation of
an abstract type named t is accessible in the definition of a function or constant named
t_name.

czech-fcns
Function or iterator name is not consistent with Czech naming convention.

czech-vars
 Variable name is not consistent with Czech naming convention.

czech-macros
 Expanded macro name is not consistent with Czech naming convention.

czech-consts
Constant name is not consistent with Czech naming convention.

czech-types
Type name is not consistent with Czech naming convention. Czech type names must not
use the underscore character.

Slovak Naming Convention
slovak

Selects complete Slovak naming convention (sets access-slovak, slovak-fcns, slovak-vars,
slovak-consts, slovak-macros, and slovak-types).

access-slovak
Allow access to abstract types following Slovak naming convention. The representation of
an abstract type named t is accessible in the definition of a function or constant named
tName.

slovak-fcns
Function or iterator name is not consistent with Slovak naming convention.

slovak-macros
Expanded macro name is not consistent with Slovak naming convention.

slovak-vars
 Variable name is not consistent with Slovak naming convention.

slovak-consts
 Constant name is not consistent with Slovak naming convention.

slovak-types
Type name is not consistent with Slovak naming convention. Slovak type names may not
include uppercase letters.

Czechoslovak Naming Convention
czechoslovak

Selects complete Czechoslovak naming convention (sets access-czechoslovak,
czechoslovak-fcns, czechoslovak-vars, czechoslovak-consts, czechoslovak-macros, and
czechoslovak-types).

access-czechoslovak

shortcut

P: +

P: -

P: -

P: -

P: -

P: -

shortcut

P: -

P: -

P: -

P: -

P: -

P: -

shortcut

P: -

Splint Manual

90

Allow access to abstract types by Czechoslovak naming convention. The representation of
an abstract type named t is accessible in the definition of a function or constant named
t_name or tName.

czechoslovak-fcns
 Function name is not consistent with Czechoslovak naming convention.

czechoslovak-macros
Expanded macro name is not consistent with Czechoslovak naming convention.

czechoslovak-vars
Variable name is not consistent with Czechoslovak naming convention.

czechoslovak-consts
Constant name is not consistent with Czechoslovak naming convention.

czechoslovak-types
Type name is not consistent with Czechoslovak naming convention. Czechoslovak type
names may not include uppercase letters or the underscore character.

Namespace Prefixes (Section 12.2)
macro-var-prefix <prefix string>

Set namespace prefix for variables declared in a macro body. (Default is m_.)
macro-var-prefix-exclude

A variable declared outside a macro body starts with the macro-var-prefix.
tag-prefix <prefix string>

Set namespace prefix of struct, union or enum tag identifiers.
tag-prefix-exclude

An identifier that is not a tag starts with the tagprefix.
enum-prefix <prefix string>

Set namespace prefix for enum members.
enum-prefix-exclude

An identifier that is not an enum member starts with the enumprefix.
file-static-prefix <prefix string>

Set namespace prefix for file static declarations.
file-static-prefix-exclude

An identifier that is not file static starts with the filestaticprefix.
global-prefix <prefix string>

Set namespace prefix for global variables.
global-prefix-exclude

An identifier that is not a global variable starts with the globalprefix.
type-prefix <prefix string>

Set namespace prefix for user-defined types.
type-prefix-exclude

An identifier that is not a type name starts with the typeprefix.
external-prefix <prefix string>

Set namespace prefix for external identifiers.
external-prefix-exclude

An identifier that is not external starts with the externalprefix.
local-prefix <prefix string>

Set namespace prefix for local variables.
local-prefix-exclude

 An identifier that is not a local variable starts with the localprefix.
unchecked-macro-prefix <prefix string>

Set namespace prefix for unchecked macros.
unchecked-macro-prefix-exclude

P: -

P: -

P: -

P: -

P: -

P: +

P: -

P: -

P: -

P: -

P: -

P: -

P: -

P: -

 UVA Secure Programming Group

91

An identifier that is not the name of an unchecked macro starts with the
uncheckedmacroprefix.

const-prefix <prefix string>
Set namespace prefix for constants.

const-prefix-exclude
An identifier that is not a constant starts with the constantprefix.

iter-prefix <prefix string>
Set namespace prefix for iterators.

iter-prefix-exclude
An identifier that is not an iter starts with the iterprefix.

proto-param-prefix <prefix string>
Set namespace prefix for parameters in function prototypes.

proto-param-prefix-exclude
An identifier that is not a parameter in a function prototype starts with the
protoprarmprefix.

proto-param-name
A parameter in a function prototype has a name (can interfere with macro definitions).

proto-param-match
The name of a parameter in a function definition does not match the corresponding name
of the parameter in a function prototype (after removing the protoparamprefix).

Naming Restrictions (Section 12.3)
shadow

Declaration reuses name visible in outer scope.

Reserved Names
ansi-reserved

External name conflicts with name reserved for the compiler or standard library.
ansi-reserved-internal

 Internal name conflicts with name reserved for the compiler or standard library.
iso-reserved

External name is reserved for system use by ISO C99 standard.
iso-reserved-internal

Internal name is reserved for system in ISO C99 standard (this should not be necessary
unless you are worried about C library implementations that violate the standard and use
macros).

cpp-names
Internal or external name conflicts with a C++ reserved word. (Will cause problems if
program is compiled with a C++ compiler.)

Distinct External Names
distinct-external-names

An external name is not distinguishable from another external name using externalnamelen
significant characters.

external-name-len <number>
Sets the number of significant characters in an external name (ANSI default minimum is
6). Sets +distinct-external-names.

external-name-case-insensitive
Make alphabetic case insignificant in external names. According to ANSI standard, case
need not be significant in an external name. If +distinct-external-names is not set, sets
+distinct-external-names with unlimited external name length.

P: -

P: -

P: -

m:--++

m:---+

m:-+++

m:--++

m:---+

m:--++

m:---+

m:--++

P: -

P: 6

P: -

Splint Manual

92

Distinct Internal Names
distinct-internal-names

An internal name is not distinguishable from another internal name using internalnamelen
significant characters. (Also effected by internal-name-case-insensitive and internal-
name-lookalike.)

internal-name-len <number>
Set the number of significant characters in an internal name. Sets +distinct-internal-names.

internal-name-case-insensitive
Set whether case is significant an internal names (-internal-name-case-insensitive means
case is significant). If +distinct-internal-names is not set, sets +distinct-internal-names
with unlimited internal name length.

internal-name-lookalike
 Set whether similar looking characters (e.g., “1” and “l”) match in internal names.

Control Flow (Section 8)

Undefined Evaluation Order (Section 8.2)
eval-order

Behavior of an expression is unspecified or implementation-dependent because sub-
expressions contain interfering side effects that may be evaluated in any order.

eval-order-uncon
An expression may be undefined because a sub-expression contains a call to an
unconstrained function (no modifies clause) that may modify something that may be
modified or used by another sub-expression.

Problematic Control Structures (Section 8.3)
inf-loops

Likely infinite loop is detected (Section 8.3.1).
inf-loops-uncon

Likely infinite loop is detected. Loop test or body calls an unconstrained function that may
produce an undetected modification.

elseif-complete
There is no finals else following an else if construct (Section 8.3.5).

case-break
There is a non-empty case in a switch not followed by a break (Section 8.3.2).

first-case
The first statement after a switch is not a case.

Duplicate-case
Duplicate cases in switch.

miss-case
A switch on an enum type is missing a case for a member of the enumerator.

emptyreturn
Empty return in function declared to return value.

alwaysexits
Loop predicate always exits.

loop-exec
Assume all loops execute at least once. This effects use-before-definition and memory
checking. It should probably not be used globally, but may be used surrounding a
particular loop that is known to always execute to prevent spurious messages. (sets for-
loop-exec, while-loop-exec and iter-loop-exec).

m:----

P: 31

P: -

P: -

m:-+++

m:---+

m:-+++

m:--++

m:---+

m:-+++

m:-+++

P+

m:-+++

P+

P+

shortcut

 UVA Secure Programming Group

93

for-loop-exec
Assume all for loops execute at least once. This effects use-before-definition and memory
checking. It should probably not be used globally, but may be used surrounding a
particular loop that is known to always execute to prevent spurious messages.

while-loop-exec
Assume all while loops execute at least once. This effects use-before-definition and
memory checking. It should probably not be used globally, but may be used surrounding a
particular loop that is known to always execute to prevent spurious messages.

iter-loop-exec
Assume all iterator loops execute at least once. This effects use-before-definition and
memory checking. It should probably not be used globally, but may be used surrounding a
particular loop that is known to always execute to prevent spurious messages.

obvious-loop-exec
Assume loop that can be determined to always execute always does.

Deep Break (Section 8.3.3)
deep-break

Report errors for break statements inside a nested while, for or switch. (Sets all nested
break and continue flags.)

loop-loop-break
There is a break inside a while, for or iterator loop that is inside a while, for or iterator loop.
Mark with /*@innerbreak@*/ to suppress the message.

switch-loop-break
There is a break inside a while, for or iterator loop that is inside a switch statement. Mark
with /*@loopbreak@*/.

loop-switch-break
There is a break inside a switch statement that is inside a while, for or iterator loop. Mark
with /*@switchbreak@*/.

switch-switch-break
There is a break inside a switch statement that is inside another switch statement. Mark
with /*@innerbreak@*/.

loop-loop-continue
There is a continue inside a while, for or iterator loop that is inside a while, for or iterator
loop. Mark with /*@innercontinue@*/.

Loop and if Bodies (Section 8.3.4)
all-empty

An if, while or for statement has no body (sets if-empty, while-empty and for-empty.)
all-block

The body of an if, while or for statement is not a block (sets if-block, while-block and for-
block.)

while-empty
A while statement has no body.

while-block
 The body of a while statement is not a block

for-empty
A for statement has no body.

for-block
The body of a for statement is not a block.

if-empty
An if statement has no body.

P-

P-

P-

P+

shortcut

m:--++

m:--++

m:---+

m:---+

m:---+

shortcut

shortcut

m:--++

m:---+

m:---+

m:---+

m:++++

Splint Manual

94

ifblock
The body of an if statement is not a block.

Suspicious Statements (Section 8.4)
unreachable

Code is not reached on any possible execution.
noeffect

Statement has no effect.
noeffect-uncon

Statement involving call to unconstrained function may have no effect.
noret

There is a path with no return in a function declared to return a non-void value.

Ignored Return Values (Section 8.4.2)
These flags control when errors are reported for function calls that do not use the return value.
Casting the function call to void or declaring the called function to return /*@alt void@*/.

ret-val-bool
Return value of type bool ignored.

ret-val-int
Return value of type int ignored.

ret-val-other
Return value of type other than bool or int ignored.

ret-val
Return value ignored (Sets retvalbool, retvalint, retvalother.)

Memory Bounds (Section 9)
bounds

Memory read or write may be out of bounds of allocated storage (sets boundsread and
boundswrite).

boundsread
A memory read references memory beyond the allocated storage (sets likelyboundsread).

boundswrite
A memory write may write to an address beyond the allocated buffer (sets likelyboundswrite).
likelybounds
Likely memory read or write may be out of bounds of allocated storage (sets likelyboundsread
and likelyboundswrite).
likelyboundsread

A likely memory read references memory beyond the allocated storage.
likelyboundswrite

A likely memory write may write to an address beyond the allocated buffer.
fcnpost

Display function post conditions.
redundantconstraints

Display seemingly redundant constraints
checkpost

The function implementation may not satisfy a post condition given in an ensures clause.
showconstraintparens

Display parentheses around constraint terms.

m:---+

m:-+++

m:-+++

m:---+

m:-+++

m:-+++

m:-+++

m:++++

shortcut

shortcut

m----

m----

shortcut

m----

m----

m----

m----

m----

P-

 UVA Secure Programming Group

95

showconstraintlocation
Display location for every constraint generated.

The following flags are mainly of interest to Splint developers. The default value are adequate
in normal use. They are included for completeness.

debugfcnconstraint

Perform buffer overflow checking even if the errors would be inhibited.
implictconstraints

Generate implicit constraints for functions. This is an experimental option. Currently this
option reduces the number of bounds errors but causes real error to be missed.

orconstraint
This flags affects the internal constraint resolution. If set, the internal constraint resolution
is more accurate. The performance impact is minimal so there is little reason not to have
this flag set.

Extensible Checking (Section 13)
mts <filename>

Load meta state declaration and corresponding xh file.
statetransfer

Transfer violates user-defined state rules.
statemerge

Control path merge violates user-defined state merge rules.

Completeness (Section 13)

Unused Declarations (Section 13.1)
These flags control when errors are reported for declarations that are never used. The unused
annotation can be used to prevent unused errors from being report for a particular declaration.

top-use
An external declaration is not used in any file.

const-use
Constant never used.

enum-mem-use
Member of enumerator never used.

var-use
Variable never used.

param-use
Function parameter never used.

fcn-use
Function is never used.

type-use
Defined type never used.

field-use
Field of structure or union type is never used.

unused-special
Declaration in a special file (corresponding to .l or .y file) is unused.

Complete Programs (Section 13.2)
decl-undef

P+

P-

P-

P+

P-

m++++

m++++

m:---+

m:-+++

m:-+++

m:++++

m:-+++

m:++++

m:++++

m:-+++

m:---+

m:--++

Splint Manual

96

Function, variable, iterator or constant declared but never defined.
partial

Check as partial system (sets -decl-undef, -export-local and prevents checking of macros in
headers without corresponding .c files.)

Exports
export-local

A declaration is exported but not used outside this module. (Declaration can use the static
qualifier.)

export-header
A declaration (other than a variable) is exported but does not appear in a header file.

export-header-var
A variable declaration is exported but does not appear in a header file.

Unrecognized Identifiers
unrecog

An unrecognized identifier is used.
sys-unrecog

Report unrecognized identifiers that start with the system prefix, __ (two underscores).
repeat-unrecog

Report multiple messages for unrecognized identifiers. If repeatunrecog is not set, an error
is reported only the first time a particular unrecognized identifier appears in the file.

Multiple Definition and Declarations
redef

A function or variable is defined more than once.
redecl

An identifier is declared more than once.
nested-extern

An extern declaration is used inside a function body.

ISO Conformance
noparams

A function is declared without a parameter list prototype.
old-style

Function definition is in old style syntax. Standard prototype syntax is preferred.
exit-arg

Argument to exit has implementation defined behavior. The only valid arguments to exit
are EXIT_SUCCESS, EXIT_FAILURE and 0. An error is reported if Splint can determine
statically that the argument to exit is not one of these.

use-varargs
Report if <varargs.h> is used (should use stdarg.h).

Limits
The ANSI Standard includes limits on minimum numbers that a conforming compiler must
support. Whether of not a particular compiler exceeds these limits, it is worth checking that a
program does not exceed them so that other compilers may safely compile it. In addition,
exceeding a limit may indicate a problem in the code (e.g., it is too complex if the control nest
depth limit is exceeded) that should be fixed regardless of the compiler. Splint checks the
following limits. For each limit, the maximum value may be set from the command line (or

shortcut

m:---+

m:--++

m:--++

P: +

P: +

P: -

P: +

m:--++

m:-+++

m:--++

m:---+

m:-+++

P: +

 UVA Secure Programming Group

97

locally using a stylized comment). The minimum limits were increased for the ISO C99
specification. If the iso99-limits flag is used, all limits are checked with the minimum values of
an ISO C99 conforming compiler. If the ansi89-limits flag is used, all limits are checked with the
minimum values of an ANSI C89 conforming compiler.

ansi89-limits
Check for violations of minimum limits prescribed by ANSI C89 standard (sets control-
nest-depth, string-literal-len, include-nest, num-struct-fields, and num-enum-members).

iso99-limits
Check for violations of minimum limits prescribed by ISO C99 standard (sets control-nest-
depth, string-literal-len, include-nest, num-struct-fields, and num-enum-members).

control-nest-depth <number>
Set maximum nesting depth of compound statements, iteration control structures, and
selection control structures (ISO C99 minimum is 63; ANSI C89 minimum is 15).

string-literal-len <number>
Set maximum length of string literals (ISO C99 minimum is 4095; ANSI C89 minimum is
509).

num-struct-fields <number>
Set maximum number of fields in a struct or union (ISO C99 minimum is 1023; ANSI
minimum is 127).

num-enum-members <number>
Set maximum number of members of an enum type (ISO C99 minimum is 1023; ANSI
minimum is 127).

include-nest <number>
Set maximum number of nested #include files (ISO C99 minimum is 63; ANSI minimum
is 8).

Header Inclusion (Section 14.3)
skip-ansi-headers

Prevent inclusion of header files in a system directory with names that match standard ANSI
headers. The symbolic information in the standard library is used instead. Flag in effect only
if a library including the ANSI library is loaded. The ANSI headers are: assert, ctype, errno,
float, limits, locale, math, setjmp, signal, stdarg, stddef, stdio, stdlib, strings, string, time, and
wchar..

skip-iso-headers
Prevent inclusion of header files in a system directory with names that match standard ISO
C99 headers. The symbolic information in the standard library is used instead. In effect
only if a library that includes the standard library is used. The ISO C99 headers are:
assert, complex, ctype, errno, fenv, float, inttypes, iso646, limits, locale, math, setjmp,
signal, stdarg, stdbool, stddef, stdio, stdlib, string, tgmath, time, wchar, and wctype.

skip-posix-headers
Prevent inclusion of header files in a system directory with names that match standard
POSIX headers. The symbolic information in the standard library is used instead. In effect
only if a library that includes the POSIX library is used. The skipped POSIX headers are:
dirent, fcntl, grp, pwd, termios, sys/stat, sys/times, sys/types, sys/utsname, sys/wait,
unistd, and utime.

warn-posix-headers
Report use of a POSIX header when checking a program with a non-POSIX library.

warn-unix-headers
Warn the user that the unix library may not be compatible with all platforms

shortcut

shortcut

m:---+

m:---+

m:---+

m:---+

m:--++

P: +

P: +

P: +

P: +

P: +

Splint Manual

98

skip-sys-headers
Prevent inclusion of all header files in system directories.

sys-dir-expand-macros
Expand macros in system directories regardless of other settings, except for macros
corresponding to names defined in a load library.

sys-dir-errors
Report errors in files in system directories (set by -sys-dirs).

warn-sys-files
Warn when a system file was listed as a command line file but Splint is not set to report errors
for system files. This prevents accidentally missing warnings in system files when Splint is run
in a system directory.

single-include
Optimize header inclusion to only include each header file once.

never-include
Use library information instead of including header files.

case-insensitive-filenames
File names are case insensitive (file.h and FILE.H are the same file).

Comments
These flags control how syntactic comments are interpreted.

comment-char <char>
Set the marker character for syntactic comments. Comments beginning with /*<char> are
interpreted by Splint.

noaccess
Ignore access comments.

nocomments
Ignore all stylized comments.

sup-counts
Actual number of errors does not match number in /*@i<n>@*/

lint-comments
Interpret traditional lint comments (/*FALLTHROUGH*/, /*NOTREACHED*/,
/*PRINTFLIKE*/).

warn-lint-comments
Print a warning and suggest an alternative when a traditional lint comment is used.

unrecog-comments
Stylized comment is unrecognized. .

unrecog-flag-comments
Semantic comment attempts to set a flag that is not recognized.

annotationerror
A declaration uses an invalid annotation.

commenterror
A syntactic comment is used inconsistently.

Parsing
continue-comment

P: -

P: +

m:---+

P: +

global: -

global: -

global: -

P: @

P: -

P: -

P: +

P: +

m:-+++

P: +

P: +

P: +

P: +

P: -

 UVA Secure Programming Group

99

A line continuation marker (\) appears inside a comment on the same line as the comment
close. Preprocessors should handle this correctly, but it causes problems for some
preprocessors.

nest-comment
A comment open sequence (/*) appears inside a comment. This usually indicates that an
earlier comment was not closed.

slashslashcomment
A // comment is used. ISO C99 allows // comments, but earlier standards did
 not.

duplicate-quals
Report duplicate type qualifiers (e.g., unsigned unsigned).

gnu-extensions
Support some GNU and Microsoft language extensions.

syntax
Parse error.

try-to-recover
Try to recover from a parse error. If trytorecover is not set, Splint will abort checking after
a parse error is detected. If it is set, Splint will attempt to recover, but Splint does performs
only minimal error recovery. It is likely that trying to recover after a parse error will lead
to an internal assertion failing.

Warn use
bufferoverflow

Use of function that may lead to buffer overflow.
bufferoverflowhigh

 Use of function that may lead to buffer overflow.
implementationoptional

Use of a declarator that is implementation optional, not required by ISO99.
multithreaded

Non-reentrant function should not be used in multithreaded code.
portability

Use of function that may have implementation-dependent behavior.
superuser

Call to function restricted to superusers.
toctou

Possible time of check, time of use vulnerability.
unixstandard

Use of function that need not be provided by UNIX implementations

ITS4 compatibility flags
its4mostrisky

Security vulnerability classified as most risky in its4 database.
its4veryrisky

Security vulnerability classified as very risky in its4 database.
its4risky

Security vulnerability classified as risky in its4 database.
its4moderate

Security vulnerability classified as moderate risk in its4 database.
its4low

Security vulnerability classified as risky in its4 database.

P: +

P: -

P: +

P: +

P: +

P: -

m:-+++

m:++++

m:--++

m:--++

m:--++

m:--++

m:---+

m:----

P: -

P: -

P: -

P: -

P: -

Splint Manual

100

Debug flags

bugslimit
Set maximum number of bugs detected before giving up.

debugfcnconstraint
Perform buffer overflow checking even if the errors would be surpressed.

grammar
Debug parsing. Prints bison generated debuging information.

keep
Do not delete temporary files.

nopp
Do not pre-process input files.

showsourceloc
Display the source code location where a warning is produced.

P: 3

m: ----

 P: -

P: -

P: -

P: -

 UVA Secure Programming Group

101

Appendix C Annotations

Suppressing Warnings
Several annotations are provided for suppressing messages. In general, it is usually better to use
specific flags to suppress a particular error permanently, but the general error suppression flags
may be more convenient for quickly suppressing messages for code that will be corrected or
documented later.

ignore
end

No errors will be reported in code regions between /*@ignore@*/ and /*@end@*/. These
comments can be used to easily suppress an unlimited number of messages, but are
dangerous since if real errors are introduced in the ignore…end region they will not be
reported. The ignore and end comments must be matched — a warning is printed if the file
ends in an ignore region or if ignore is used inside ignore region.

i
No errors will be reported from an /*@i@*/ comment to the end of the line.

i<n>
No errors will be reported from an /*@i<n>@*/ (e.g., /*@i3@*/) comment to the end of
the line. If there are not exactly n errors suppressed from the comment point to the end of
the line, Splint will report an error. This is more robust than i or ignore since a message is
generated if the expected number errors is not present. Since errors are not necessarily
detected until after this file is processed (for example, and unused variable error), suppress
count errors are reported after all files have been processed. The -supcounts flag may be
used to suppress these errors. This is useful when a system if being rechecked with
different flag settings.

t
t<n>

Like i and i<n>, except controlled by +tmpcomments flag. These can be used to
temporarily suppress certain errors. Then, -tmpcomments can be set to find them again.

Syntactic Annotations
The grammar below is the C syntax from [K&R,A13] modified to show the syntax of syntactic
comments. Only productions effected by Splint annotations are shown. In the annotations, the @
represents the comment marker char, set by -commentchar (default is @).

Functions
direct-declarator ⇒

 direct-declarator (parameter-type-listopt) stateClause*opt globalsopt modifiesopt
| direct-declarator (identifier-listopt) stateClause*opt globalsopt modifiesopt

stateClause ⇒ /*@ (uses | sets | defines | allocates | releases) reference,+ ;opt @*/

 | /*@ (ensures | requires) stateTag reference,+ ;opt @*/ (Section 7.4)

stateTag ⇒ only | shared | owned | dependent | observer | exposed | isnull | notnull

 | identifier (Annotation defined by metastate definition, Section 10)

globals ⇒ /*@globals globitem,+ ;opt @*/ | /*@globals declaration-listopt ; opt @*/

Splint Manual

102

globitem ⇒ [(undef | killed)*] identifier | internalState | fileSystem

modifies ⇒ /*@modifies (nothing | (expression | internalState | fileSystem)+; opt) @*/

 | /*@*/ (Abbreviation for no globals and modifies nothing.)

Iterators (Section 11.4)
The globals and modifies clauses for an iterator are the same as those for a function, except they
are not enclosed by a comment, since the iterator is already a comment.

direct-declarator
⇒ /*@iter identifier (parameter-type-listopt) iterGlobalsopt iterModifiesopt @*/

iter-globals ⇒ globals declaration-listopt ;opt
iter-modifies ⇒ modifies moditem,+ ;opt | modifies nothing ;opt

Constants (Section 11.1)
external-declaration ⇒ /*@constant declaration ;opt @*/

Alternate Types (Section 4.4)
Alternate types may be used in the type specification of parameters and return values.

extended-type⇒ type-specifier alt-type opt
alt-type ⇒ /*@alt basic-type,+ @*/

Declarator Annotations
General annotations appear after storage-class-specifiers and before type-specifiers. Multiple
annotations may be used in any order. Here, annotations are without the surrounding comment.
In a declaration, the annotation would be surrounded by /*@ and @*/. In a globals or modifies
clause or iterator or constant declaration, no surrounding comments would be used since they are
within a comment.

Type Definitions (Section 4.3)
A type definition may use any either abstract or concrete, either mutable or immutable, and
refcounted. Only a pointer to a struct may be declared with refcounted. Mutability annotations
may not be used with concrete types since concrete types inherit their mutability from the actual
type.

abstract
Type is abstraction (representation is hidden from clients.)

concrete
Type is concrete (representation is visible to clients.)

immutable
Instances of the type cannot change value.

mutable
Instances of the type can change value.

refcounted
Reference counted (Section 5.4).

Type Access
Control comments may also be used to override type access settings.

 UVA Secure Programming Group

103

/*@access <type>,+@*/

Allows the following code to access the representation of <type>. Type access applies
from the point of the comment to the end of the file or the next access control comment for
this type.

/*@noaccess <type>,+@*/
Restricts access to the representation of <type>. The type in a noaccess comment must
have been declared as an abstract type.

Global Variables (Section 7.2)
One check annotation may be used on a global or file-static variable declaration.

unchecked
Weakest checking for global use.

checkmod
Check modification by not use of global.

checked
Check use and modification of global.

checkedstrict
Check use of global, even in functions with no global list.

Memory Management (Section 3)
dependent

A reference to externally-owned storage. (Section 5.2.2)
keep

A parameter that is kept by the called function. The caller may use the storage after the call, but the
called function is responsible for making sure it is deallocated. (Section 5.2.4)

killref
A refcounted parameter. This reference is killed by the call. (Section 5.4)

only
An unshared reference. Associated memory must be released before reference is lost. (Section 5.2)

owned
Storage may be shared by dependent references, but associated memory must be released before this
reference is lost. (Section 5.2.2)

shared
Shared reference that is never deallocated. (Section 5.2.5)

temp
A temporary parameter. May not be released, and new aliases to it may not be created.
(Section 5.2.2)

Aliasing (Section 6)
Both alias annotations may be used on a parameter declaration.

unique
Parameter that may not be aliased by any other reference visible to the function. (Section 6.1.1)

returned
Parameter that may be aliased by the return value. (Section 6.1.2)

Exposure (Section 6.2)
observer

Reference that cannot be modified. (Section 6.2.1)
exposed

Splint Manual

104

Exposed reference to storage in another object. (Section 6.2)

Definition State (Section 3)
out

Storage reachable from reference need not be defined.
in

All storage reachable from reference must be defined.
partial

Partially defined. A structure may have undefined fields. No errors reported when fields are used.
reldef

Relax definition checking. No errors when reference is not defined, or when it is used.

Global State (Section 7.2.2)
These annotations may only be used in globals lists. Both annotations may be used for the same
variable, to mean the variable is undefined before and after the call.

undef

Variable is undefined before the call.
killed

Variable is undefined after the call.

Null State (Section 2)
null

Possibly null pointer.
notnull

Non-null pointer.
relnull

Relax null checking. No errors when NULL is assigned to it, or when it is used as a non-null
pointer.

Null Predicates (Section 2.1.1)
A null predicate annotation may be used of the return value of a function returning a Boolean
type, taking a possibly-null pointer for its first argument.

nullwhentrue
If result is true, first parameter is NULL.

falsewhennull
If result is TRUE, first parameter is not NULL.

Execution (Section 8.1)
The noreturn, maynotreturn and alwaysreturn annotations may be used on any function. The
noreturnwhentrue and noreturnwhenfalse annotations may only be used on functions whose first
argument is a Boolean.

noreturn
Function never returns.

maynotreturn
Function may or may not return.

noreturnwhentrue
Function does not return if first parameter is TRUE.

noreturnwhenfalse
Function does not return if first parameter if FALSE.

 UVA Secure Programming Group

105

alwaysreturn
Function always returns.

Side Effects (Section 11.2.1)
sef

Corresponding actual parameter has no side effects.

Declarations
These annotations can be used on a declaration to control unused or undefined error reporting.

unused
Identifier need not be used (no unused errors reported.) (Section 13.1)

external
Identifier is defined externally (no undefined error reported.) (Section 13.2)

Switch Statements
fallthrough

Fall through case. No message is reported if the previous case may fall through into the one
immediately after the fallthrough.

Break and Continue Statements (Section 8.3.3)
These annotations are used before a break or continue statement.

innerbreak
Break is breaking an inner loop or switch.

loopbreak
Break is breaking a loop.

switchbreak
Break is breaking a switch.

innercontinue
Continue is continuing an inner loop.

Unreachable Code
This annotation is used before a statement to prevent unreachable code errors.

notreached
Statement may be unreachable.

Format String Arguments
These annotations are used immediately before a function declaration.

printflike
Check variable arguments like printf library function.

scanflike
Check variable arguments like scanf library function.

Use Warnings
These annotations are used immediately before a function, variable or type declaration.

warn <flag-specifier> <message>
Issue a warning (controlled by flag-specifier) where this declarator is used.

Splint Manual

106

Macro Expansion
/*@notfunction@*/

The next macro definition is not intended to be a function, and should be expanded in line
instead of checked as a macro function definition.

Arbitrary Integral Types
These annotations are used to represent arbitrary integral types. Syntactically, they replace the
implicit int type.

/*@integraltype@*/

An arbitrary integral type. The actual type may be any one of short, int, long, unsigned
short, unsigned, or unsigned long.

/*@unsignedintegraltype@*/
An arbitrary unsigned integral type. The actual type may be any one of unsigned short,
unsigned, or unsigned long.

/*@signedintegraltype@*/
An arbitrary signed integral type. The actual type may be any one of short, int, or long.

Traditional Lint Comments
Some of the control comments supported by most standard UNIX lints are supported by Splint so
legacy systems can be checked more easily. These comments are not lexically consistent with
Splint comments, and their meanings are less precise (and may vary between different lint
programs), so we recommend that Splint comments are used instead except for checking legacy
systems already containing standard lint comments.

These standard lint comments supported by Splint:

/*FALLTHROUGH*/ (alternate misspelling, /*FALLTHRU*/)
Prevents errors for fall through cases. Same meaning as /*@fallthrough@*/.

/*NOTREACHED*/
Prevents errors about unreachable code (until the end of the function). Same meaning as
/*@notreached@*/.

/*PRINTFLIKE*/
Arguments similar to the printf library function (there didn’t seem to be much of a
consensus among standard lints as to exactly what this means). Splint supports:

/*@printflike@*/
Function takes zero or more arguments of any type, an unmodified char * format
string argument and zero of more arguments of type and number dictated by the
format string. Format codes are interpreted identically to the printf standard library
function. May return a result of any type. (Splint interprets /*PRINTFLIKE*/ as
/*@printflike@*/.)

/*@scanflike@*/
Like printflike, except format codes are interpreted as in the scanf library function.

/*ARGSUSED*/
Turns off unused parameter messages for this function. The control comment,
/*@-paramuse@*/ can be used to the same effect, or /*@unused@*/ can be used in
individual parameter declarations.

Splint will ignore standard lint comments if -lint-comments is used. If +warn-lint-comments is
used, Splint generates a message for standard lint comments and suggest replacements.

 UVA Secure Programming Group

107

Metastate Definitions
The grammar for .mts files is shown below.

metastate ⇒ [global] attribute identifier clause* end
clause ⇒ contextClause | valuesClause | defaultClause | defaultsClause

 | annotationsClause | mergeClause | transfersClause | loserefClause
| preconditionsClause | postconditionsClause

contextClause⇒ context contextSelector
contextSelector ⇒ (parameter | reference | result | clause | literal | null) [type]
valuesClause⇒ oneof valueChoice,*

defaultClause ⇒ default valueChoide
defaultsClause⇒ defaults (contextSelector ==> valueChoice)*

annotationsClause⇒ annotations (identifier [contextSelector] ==> valueChoice)*

mergeClause⇒ merge (mergeItem + mergeItem ==> transferAction)*
mergeItem⇒ valueChoice | *

transfersClause⇒ transfers (valueChoice as valueChoice ==> transferAction)*
loserefClause⇒ losereference (valueChoice ==> errorAction)*

transferAction⇒ valueChoice | errorAction
errorAction⇒ error [stringLiteral]

valueChoice⇒ identifier

Splint Manual

108

Appendix D Specifications
Another way of providing more information about programs is to use formal specifications.
Although this document has largely ignored specifications, Splint was originally designed to use
the information in LCL specifications instead of source-code annotations. This document focuses
on annotations since it takes less effort to add annotations to source code than to maintain an
additional specification file. Annotations can express everything that can be expressed in LCL
specifications that is relevant to Splint checking. However, LCL specifications can provide more
precise documentation on program interfaces than is possible with Splint annotations. This
appendix (extracted from [Evans94]) is a very brief introduction to LCL Specifications. For more
information, consult [GH93].

The Larch family of languages is a two-tiered approach to formal specification. A specification is
built using two languages — the Larch Shared Language (LSL), which is independent of the
implementation language, and a Larch Interface Language designed for the specific
implementation language. An LSL specification defines sorts, analogous to abstract types in a
programming language, and operators, analogous to procedures. It expresses the underlying
semantics of an abstraction.

The interface language specifies an interface to an abstraction in a particular programming
language. It captures the details of the interface needed by a client using the abstraction and
places constraints on both correct implementations and uses of the module. The semantics of the
interface are described using primitives and sorts and operators defined in LSL specifications.
Interface languages have been designed for several programming languages.

LCL [GH93, Tan95] is a Larch interface language for Standard C. LCL uses a C-like syntax.
Traditionally, a C module M consists of a source file, M.c, and a header file, M.h. The header file
contains prototype declarations for functions, variables and constants exported by M, as well as
those macro definitions that implement exported functions or constants, and definitions of
exported types. When using LCL, a module includes two additional files — M.lcl, a formal
specification of M, and M.lh, which is derived by Splint (if the lh flag is on) from M.lcl. Clients
use M.lcl for documentation, and should not need to look at any implementation file. The derived
file, M.lh, contains include directives (if M depends on other specified modules), prototypes of
functions and declarations of variables as specified in M.lcl. The file M.h should include M.lh and
retain the implementation aspects of the old M.h, but is no longer used for client documentation.

Specification Flags
These flags are relevant only when Splint is used with LCL specifications.

Global Flags
lcs

Generate .lcs files containing symbolic state of .lcl files (used for imports). By default .lcs
files are generated for each .lcl file processed. Use -lcs to prevent generation of .lcs files.

lh
Generate .lh files. By default, -lh is set and no .lh files are generated. Use +lh to enable .lh
file generation.

i <file>
Set LCL initialization file to <file>. The LCL initialization file is read if any .lcl files are
listed on the command line. The default file is lclinit.lci, found on the LARCH_PATH.

 UVA Secure Programming Group

109

lclexpect <number>
Exactly <number> specification errors are expected. Specification errors are errors
detected when checking the specifications. They do not depend on the source code.

Implicit Globals Checking Qualifiers
imp-checked-spec-globs

Implicit checked qualifier on global variables specified in an LCL file with no checking
annotation.

imp-checkmod-spec-globs
Implicit checkmod qualifier on global variables specified in an LCL file with no checking
annotation.

imp-checkedstrict-spec-globs
Implicit checked qualifier on global variables specified in an LCL file with no checking
annotation.

Implicit Annotations
spec-glob-imp-only

Implicit only annotation on global variable declaration in an LCL file with no allocation
annotation.

spec-ret-imp-only
Implicit only annotation on return value declaration in an LCL file with no allocation
annotation.

spec-struct-imp-only
Implicit only annotation on structure field declarations in an LCL file with no allocation
annotation.

spec-imp-only
Sets spec-glob-imp-only, spec-ret-imp-only and spec-struct-imp-only.

Macro Expansion
spec-macros

Macros defining specified identifiers are not expanded and are checked according to the
specification.

Complete Programs and Specifications
spec-undef

Function, variable, iterator or constant specified but never defined.
spec-undecl

Function, variable, iterator or constant specified but never declared.
need-spec

There is information in the specification that is not duplicated in syntactic comments.
Normally, this is not an error, but it may be useful to detect it to make sure checking
incomplete systems without the specifications will still use this information.

export-any
An error is reported for any identifier that is exported but not specified. (Sets all export
flags below.)

export-const
Constant exported but not specified.

export-var
Variable exported but not specified.

export-fcn

m:-++-

m:----

m:---+

P: -

P: -

P: -

shortcut

P: +

m:-+++

P: -

P: -

shortcut

m:---+

m:---+

m:---+

Splint Manual

110

Function exported but not specified.
export-iter

Iterator exported but not specified.
export-macro

An expanded macro exported but not specified
export-type

Type definition exported but not specified

m:---+

m:---+

m:---+

 UVA Secure Programming Group

111

Appendix E Annotated Bibliography

Splint
All of these papers are available at http://www.splint.org/publications/.

[Barker01] Chris Barker. Static Error Checking of C Applications Ported from UNIX to WIN32
Systems Using LCLint. Senior Thesis, University of Virginia Deptartment of Computer Science.
May 2001.

Describes annotations and checks useful for porting applications.

[Evans94] David Evans. Using specifications to check source code. MIT/LCS/TR 628,
Laboratory for Computer Science, MIT, June 1994.

MIT SM Thesis. Describes research behind Splint, focusing on how specifications can be
exploited to do lightweight checking. Includes case studies using LCLint.

[EGHT94] David Evans, John Guttag, Jim Horning and Yang Meng Tan. LCLint: A tool for
using specifications to check code. SIGSOFT Symposium on the Foundations of Software
Engineering, December 1994.

Somewhat obsolete introduction to LCLint. Shows how LCLint is used to find errors in a
sample program.

[Evans96] David Evans. Static Detection of Dynamic Memory Errors. SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’96), Philadelphia, PA., May 1996.

Describes approach for exploiting annotations added to code to detect a wide class of
errors. Focuses on memory management checks described in Section 5 of this manual.

[Evans00] David Evans. Annotation-Assisted Lightweight Static Checking. First International
Workshop on Automated Program Analysis, Testing and Verification. February, 2000.

Short position paper describing research agenda behind Splint.

[Evans02] David Evans and David Larochelle. Improving Security Using Extensible
Lightweight Static Analysis. IEEE Software, Jan/Feb 2002.

Most security attacks exploit instances of well-known classes of implementations flaws.
This article describes how Splint can be used to detect common security vulnerabilities
(including buffer overflows and format string vulnerabilities).

[Larochelle01] David Larochelle and David Evans. Statically Detecting Likely Buffer
Overflow Vulnerabilities. 2001 USENIX Security Symposium, Washington, D. C., August
13-17, 2001.

Buffer overflow attacks may be today's single most important security threat. This paper
describes how Splint can be used to detect likely vulnerabilities through an analysis of the

Splint Manual

112

program source code and presents experience using our approach to detect buffer overflow
vulnerabilities in two security-sensitive programs.

C
[ISO99] International Standard ISO/IEC 9899. Programming languages – C. Second edition.
December 1999.

International standard specification for C programming language. Approved by ANSI
May 2000.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language, second
edition. Prentice Hall, New Jersey, 1988.

Standard reference for ANSI C. If you haven’t heard of this one, you probably didn’t get
this far (unless you started at the back).

[vdL94] Peter van der Linden. Expert C Programming: Deep C Secrets. SunSoft Press, Prentice
Hall, New Jersey, 1994.

Filled with useful information on the darker corners of C, as well as lots of industry
anecdotes and humor. Splint’s reserved name checking is loosely based on the list of
reserved names in this book.

Methodology
[GH93] John Guttag and James Horning with Stephen J. Garland, Kevin D. Jones, Andrés Modet,
and Jeannette M. Wing. Larch: Languages and Tools for Formal Specification. Springer-Verlag,
Texts and Monographs in Computer Science, 1993.

Overview of the Larch family of specification languages and related tools. Includes a
chapter on LCL, the Larch C interface language, on which Splint is based.

[LG86] Barbara Liskov and John Guttag. Abstraction and Specification in Program
Development, MIT Press, Cambridge, MA, 1986.

Describes a programming methodology using abstract types and specified interfaces.
Much of the methodology upon which Splint is based comes from this book. Uses the
CLU programming language.

[Liskov01] Barbara Liskov with John Guttag. Program Development in Java, Addison Wesley,
2001.

An updated version of [LG86] for the Java programming language.

[Tan95] Yang Meng Tan. Formal Specification Techniques for Engineering Modular C. Kluwer
International Series in Software Engineering, Volume 1, Kluwer Academic Publishers, Boston,
1995.

Modified and updated version of MIT Ph D thesis, previously published as MIT/LCS/TR-
619, 1994. Includes presentation of the semantics of LCL and a case study using LCL.

 UVA Secure Programming Group

113

Secure Programming
[Hat95] Les Hatton. Safer C: Developing Software for High-integrity and Safety-critical Systems.
McGraw-Hill International Series in Software Engineering, 1995.

A broad work on all aspects of developing safety-critical software, focusing on the C
language. Provides good justification for the use of C in safety-critical systems, and the
necessity of tool-supported programming standards. Splint users will be interested to see
how many of the errors listed as only being dynamically detectable can be detected
statically by Splint.

[VM02] John Viega and Gary McGraw. Building Secure Software: How to Avoid Security
Problems the Right Way. Addison-Wesley, 2002.

A comprehensive survey of techniques and principles for building secure programs.

See also [Evans02] and [Larochelle01].

 UVA Secure Programming Group

115

Index
.splintrc, 72
/*@*/, 36
@, 12, 98, 100
abstract types, 15, 21, 22, 23, 31, 32, 33, 39,

58, 60, 61, 66, 79, 80, 88, 89, 102, 107,
111

access control, 22
aliasing, 9, 27, 31, 83, 86, 102
alternate types, 47, 74, 101
annotations, 9, 10, 13, 26, 27, 41, 100, 101

abstract, 21, 30, 80, 101
access, 23, 102
allocates, 39
alt, 57, 93
checked, 37, 67, 86, 102
checkedstrict, 37, 67, 85, 86, 102
checkmod, 37, 86, 102
concrete, 80, 101
constant, 87
defines, 39
dependent, 27, 41, 82, 102
end, 100
exits, 42, 103
exposed, 33, 82, 103
external, 65, 104
fallthrough, 45, 104, 105
falseexit, 42
falsenull, 14, 103
falsewhennull, 14
fileSystem, 36
i, 100
i<n>, 98, 100
ignore, 100
immutable, 23, 101
implicit, 29
in, 17, 103
innerbreak, 45, 93, 104
innercontinue, 46, 93, 104
integraltype, 20, 105
internalState, 36, 57
iter, 58, 59, 87, 90
keep, 28, 82, 102
killed, 38, 103
killref, 102
loopbreak, 45, 46, 93, 104
misscase, 45
mutable, 23, 101
neverexit, 104

noaccess, 23, 102
notfunction, 58, 68, 87, 105
nothing, 36
notnull, 15, 103
notreached, 104, 105
null, 14, 27, 55, 103
nullwhentrue, 14
observer, 33, 82, 84, 102
only, 26, 31, 38, 40, 41, 81, 82, 83, 102
out, 17, 103
owned, 27, 41, 81, 82, 102
partial, 18, 103
printflike, 104, 105
refcounted, 30, 101
refs, 30
reldef, 18, 103
releases, 40
relnull, 15, 103
returned, 31, 102
scanflike, 104, 105
sef, 56, 88, 104
sets, 39
shared, 28, 41, 82, 102
signedintegraltype, 20, 105
switchbreak, 45, 93, 104
t, 100
t<n>, 100
temp, 27, 82, 83, 84, 102
trueexit, 42
truenull, 14
unchecked, 37, 67, 85, 86, 102
undef, 38, 103
unique, 31, 102
unsignedintegraltype, 20, 105
unused, 65, 104, 105
uses, 39
warnuse, 104
yield, 58

ARGSUSED, 105
assert, 42, 67
bool, 20, 42, 67, 77, 79, 94, 103
break statements, 45, 92, 104
characters, 19
CLU, 25
comparisons, 79
complete logic, 46
complete programs, 65, 95, 108
continue statements, 45, 104

Splint Manual

116

control comments, 13
control flow, 42, 103
control nesting depth, 96
control structures, 92
czechmacros, 60
declarations, 38, 86, 104
distinct names, 63, 91
enumerators, 19, 97
environment variables

LARCH_PATH, 72
LCLIMPORTDIR, 72

errno, 67
evaluation order, 91
exit, 96
exit status, 74
expected errors, 74
exported declarations, 65
exports, 95
exposure, 84, 102
external names, 65, 91
fall through cases, 9, 45, 104, 105
FALLTHROUGH, 98, 105
fileSystem, 36, 85
flag name abbreviations, 70
flags, 10, 11, 12

abstract, 80
accessczech, 60, 61, 80, 88
accessczechoslovak, 81, 89
accessfile, 23, 80
accessfunction, 23
accessmodule, 22, 80
accesssall, 81
accessslovak, 61, 80, 89
aliasunique, 83
allblock, 93
allempty, 93
allglobs, 85
allimponly, 29
allmacros, 57, 68, 87
ansilib, 73
ansilimits, 96
ansireserved, 63, 91
ansireservedinternal, 63, 91
ansistrict, 66
array parameters, 78
assignexpose, 32, 84
bitwisesigned, 78
bool, 77
boolcompare, 79
boolfalse, 20, 77

boolint, 13, 79
booltrue, 20, 77
booltype, 20, 77
branchstate, 81
casebreak, 45, 92
castexpose, 32, 84
castfcnptr, 79
charindex, 19, 79
charint, 13, 19, 79
charintliteral, 80
checkedglobalias, 86
checkmodglobalias, 86
checks, 36, 75
checkstrictglobalias, 86
checkstrictglobs, 37, 85
codeimponly, 83
commentchar, 12, 98, 100
compdef, 65, 76
compdestroy, 81
compmempass, 83
constmacros, 57, 58, 87
constprefix, 62, 90
constprefixexclude, 90
constuse, 65, 95
continuecomment, 98
controlnestdepth, 96
cppnames, 91
czech, 60, 88
czechconstants, 60
czechconsts, 88
czechfcns, 60, 88
czechmacros, 88
czechoslovak, 89
czechoslovakconstants, 61
czechoslovakconsts, 89
czechoslovakfcns, 61, 89
czechoslovakmacros, 61, 89
czechoslovaktype, 61
czechoslovaktypes, 89
czechoslovakvars, 61, 89
czechtypes, 61, 88
czechvars, 60, 88
D<initializer>, 72
declundef, 95
deepbreak, 46, 92
deparrays, 81
dependenttrans, 82
distinctexternalnames, 63, 91
distinctinternalnames, 91
dump, 67, 72, 73

 UVA Secure Programming Group

117

duplicatequals, 98
elseifcomplete, 46, 92
empty, 87
enumindex, 19, 79
enumint, 19, 79
enummemuse, 65, 95
enumprefix, 62, 89, 90
enumprefixexclude, 90
evalorder, 43, 91
evalorderuncon, 43, 44, 91
exitarg, 96
expect, 74
exportany, 108
exportconst, 108
exportfcn, 108, 109
exportheader, 65, 95
exportheadervar, 95
exportiter, 109
exportlocal, 95
exportmacro, 108, 109
exporttype, 109
exportvar, 108, 109
exposetrans, 82
externalnamecaseinsensitive, 63, 91
externalnamelen, 91
externalprefix, 62, 90
externalprefixexclude, 90
f <file>, 12, 72
fcnmacros, 57, 58, 87
fcnuse, 65, 95
fielduse, 65, 95
filestaticprefix, 62, 90
filestaticprefixexclude, 90
fixedformalarray, 78
floatdouble, 79
forblock, 93
forcehints, 12, 74
forempty, 93
formalarray, 78
formatcode, 78
formattype, 78, 79
forwarddecl, 79
freshtrans, 82
globalias, 86
globalprefix, 90
globalprefixexclude, 90
globimponly, 29, 83
globnoglobs, 37, 85
globs, 85
globsimpmodsnothing, 70, 85

globstate, 85
globuse, 85
globvarprefix, 62
globvarprefixexclude, 62
gnuextensions, 98
hasyield, 88
help, 71
hints, 74
i <file>, 107
I<directory>, 72
ifblock, 46, 93
ifempty, 93
ignorequals, 80
ignoresigns, 19, 80
immediatetrans, 82
impabstract, 22, 80
impcheckedglobs, 86
impcheckedspecglobs, 108
impcheckedstatics, 86
impcheckedstrictglobs, 86
impcheckedstrictspecglobs, 108
impcheckedstrictstatics, 38, 86
impcheckmodglobs, 86
impcheckmodinternals, 86
impcheckmodspecglobs, 108
impcheckmodstatics, 86
impouts, 17, 18, 76
imptype, 79
includenest, 96, 97
incompletetype, 79
incondefs, 86
incondefslib, 86
infloops, 92
infloopsuncon, 44, 92
internalglobs, 85
internalglobsnoglobs, 85
internalnamecaseinsensitive, 64, 91
internalnamelen, 91
internalnamelength, 64
internalnamelookalike, 64, 91
iterprefix, 62, 90
iterprefixexclude, 90
keeptrans, 82
kepttrans, 82
larchpath, 72
lclexpect, 108
lclimportdir, 72
lcs, 107
lh, 107
libmacros, 87

Splint Manual

118

limit, 74
linelen, 12, 74
lintcomments, 98, 106
load, 67, 73
localprefix, 90
localprefixexclude, 90
longintegral, 20, 80
longsignedintegral, 20, 80
longunsignedintegral, 20, 80
longunsignedunsignedintegral, 20, 80
looploopbreak, 45, 92
looploopcontinue, 45, 93
loopswitchbreak, 45, 93
macroassign, 56, 87
macroconstdecl, 57, 87
macrodecl, 87
macrofcndecl, 57, 87
macromatchname, 87
macroparams, 56
macroparens, 56, 87
macroredef, 87
macrostmt, 56, 87
macrounrecog, 87
macrovarprefix, 61, 62, 89
macrovarprefixexclude, 62, 89
maintype, 79
matchanyintegral, 20, 80
matchfields, 86
mayaliasunique, 83
memimp, 83
memtrans, 82
misscase, 92
modfilesys, 85
modfilesystem, 36
modglobs, 85
modglobsnomods, 37, 84, 85
modglobsunchecked, 85
modifies, 13, 84
modinternalstrict, 85
modnomods, 36, 84
modobserver, 84
modobserverstrict, 84
modsimpnoglobs, 86
modstrictglobsnomods, 84, 85
moduncon, 36, 84
modunconnomods, 84
mustdefine, 17, 76
mustfree, 81
mustfreefresh, 11
mustmod, 36, 84

mustnotalias, 83
mutrep, 23, 80
namechecks, 88
needspec, 108
nestcomment, 98
neverinclude, 68, 98
newreftrans, 82
nextlinemacros, 87
noaccess, 98
nocomments, 98
noeffect, 46, 47, 93
noeffectuncon, 46, 47, 93
nof, 12, 72
nolib, 67, 73
noparams, 96
noret, 93
null, 75, 76
numenummembers, 96, 97
numliteral, 80
numstructfields, 96, 97
observertrans, 82
oldstyle, 96
onlytrans, 82
onlyunqglobaltrans, 82
overload, 86
ownedtrans, 82
paramimptemp, 29, 83
paramuse, 65, 95, 105
parenfileformat, 11, 74
partial, 65, 95
passunknown, 83
posixlib, 66, 73
posixstrictlib, 66, 73
predassign, 20, 77
predbool, 77
predboolint, 77
predboolothers, 20, 77
predboolptr, 20, 21, 77
protoparammatch, 63, 90
protoparamname, 62, 90
protoparamprefix, 62, 90
protoparamprefixexclude, 90
ptrarith, 78
ptrcompare, 79
ptrnegate, 78
quiet, 74
readonlystrings, 33, 84
readonlytrans, 84
realcompare, 79
redecl, 38, 96

 UVA Secure Programming Group

119

redef, 96
refcounttrans, 82
relaxquals, 19, 80
relaxtypes, 80
repeatunrecog, 96
repexpose, 84
retalias, 31, 84
retexpose, 32, 84
retimponly, 29, 83
retval, 94
retvalbool, 47, 94
retvalint, 47, 94
retvalother, 94
retvalothers, 47
S<directory>, 72
sefparams, 88
sefuncon, 57, 88
shadow, 90
sharedtrans, 82
shiftsigned, 78
showallconjs, 74
showalluses, 73
showcol, 11
showcolumn, 74
showfunc, 11, 13, 74
showscan, 73
showsummary, 73
singleinclude, 68, 97
sizeofformalarray, 78
sizeoftype, 78
skipansiheaders, 68, 97
skipposixheaders, 68, 97
skipsysheaders, 68, 97
slovak, 61, 88
slovakconstants, 61
slovakconsts, 89
slovakfcns, 61, 89
slovakmacros, 61, 89
slovaktypes, 89
slovakvars, 61, 89
specglobimponly, 108
specimponly, 108
specmacros, 108
specretimponly, 108
specstructimponly, 108
specundecl, 108
specundef, 108
stackref, 83
standard, 75
staticinittranc, 83

statictrans, 82
stats, 74
strict, 75
strictbranchstate, 81
strictdestroy, 82
strictlib, 73
strictops, 78
strictusereleased, 81
stringliterallen, 77, 96, 97
structimponly, 29, 83
supcounts, 98, 100
switchloopbreak, 45, 93
switchswitchbreak, 45, 93
syntax, 98
sysdirerrors, 72, 97
sysdirexpandmacros, 97
sysdirs, 68, 72, 97
systemunrecog, 96
tagprefix, 62, 89
tagprefixexclude, 89
temptrans, 82
timedist, 74
tmpcomments, 100
tmpdir, 72
topuse, 65, 95
trytorecover, 98, 99
type, 73, 76, 77
typeprefix, 62, 90
typeprefixexclude, 62, 90
typeuse, 65, 95
U<initializer>, 72
uncheckedglobalias, 86
uncheckedmacroprefix, 62, 90
uncheckedmacroprefixexclude, 90
uniondef, 76
unixlib, 66, 73
unixstrictlib, 66, 73
unqualifiedinititrans, 83
unqualifiedtrans, 82
unreachable, 92, 93
unrecog, 96
unrecogcomments, 98
unusedspecial, 95
usedef, 17, 76
usereleased, 81
usestderr, 73
usevarargs, 96
varuse, 65, 95
voidabstract, 79
warnflags, 12, 71

Splint Manual

120

warnlintcomments, 98, 106
warnmissingglobs, 85
warnmissingglobsnoglobs, 85
warnposixheaders, 97
weak, 11, 75
whichlib, 73, 74
whileblock, 93
whileempty, 93
zeroptr, 80

format codes, 78
free, 26, 27, 66, 82
function interfaces, 35, 84
gcc extensions, 98
global variables, 17, 32, 37, 43, 62, 85, 86,

101, 102, 108
globals list, 37, 43, 44
GNU extensions, 98
header file inclusion, 97
header files, 65, 67, 68
help, 71
hints, 12, 74
if bodies, 46
ignored return values, 9, 47, 93
immutable type, 23
implicit annotations, 37, 83, 86, 108
include file nesting, 97
infinite loops, 9, 37, 44
information hiding, 9, 19, 21, 102
initialization files, 12, 72

.splintrc, 12, 72
lclinit.lci, 108

initializers, 82
internalState, 36, 57, 85
isalpha, 67
iscntrl, 67
isdigit, 67
isgraph, 67
islower, 67
isprint, 67
ispunct, 67
isspace, 67
isupper, 67
isxdigit, 67
iterators, 58, 87, 88, 101
Larch, 107
LARCH_PATH, 72, 108
LCL, 107
LCLIMPORTDIR, 72
lcs files, 107
lh files, 107

libraries, 66, 72, 86
line splitting, 12
lint comments, 105
loop bodies, 46
loopexec, 92
LSL, 107
macros, 55, 62, 86, 105, 108
main, 79
malloc, 26
McConnell, Steve, 21
memory leaks, 25, 81, 102
memory management, 9, 25, 30, 81
message format, 74
Microsoft VisualStudio, 12, 74
modes, 75

checks, 36, 75
standard, 75
strict, 75
weak, 11, 75

modification, 31, 32, 33, 35, 43, 56, 57, 84
modifies clause, 35, 39, 43, 44, 46, 57, 84,

85, 101
multiple definitions, 96
mutability, 23, 32
mutable type, 23
namespaces, 61, 89
naming convention, 23, 60, 88

Czech, 60, 63, 80, 88
Czechoslovak, 61, 81, 89
Slovak, 61, 63, 80, 88

naming restrictions, 63, 90
no effects, 46, 93
NOTREACHED, 98, 105
null, 66, 85
null dereferences, 14, 75, 76, 103
null predicates, 103
numeric types, 19
output, 73
parse errors, 98
parsing, 98
partial programs, 65
path with no return, 93
pointers, 79
polymorphism, 57, 101
POSIX, 66, 97
predicates, 77
preprocessor, 72
primitive operations, 78
printf, 66, 78, 104
PRINTFLIKE, 98, 105

 UVA Secure Programming Group

121

problematic control structures, 44
read-only storage, 32
reference counting, 30, 82
reserved names, 63, 91
return values, 47
security vulnerabilities, 9
sequence points, 43
Shakespeare, William, 25, 26
shared storage, 27
sharing, 31, 83
sharing semantics, 23
side effect free, 88
side effect free parameters, 56
side effects, 104
sizeof, 22, 78
special reward, 75
stack pointers, 25, 28
stack references, 28
standard error, 73
standard libraries, 66
standard library, 26
standard output, 73
static, 65
static variables, 37
stderr, 67
stdin, 67
stdout, 67
storage model, 25
strchr, 67

string literals, 33, 84, 97
strrchr, 67
structure fields, 97
suppressing warnings, 100
switch, 104
switch statements, 44, 45
syntactic comment, 98
syntax, 12
tolower, 67
toupper, 67
type, 9, 13, 21, 77, 78
type access, 102
type checking, 19
type equivalence, 79
types, 105
undefined, 43
undefined behavior, 31, 33, 36, 37, 43, 55,

91
undefined values, 9, 17, 38, 76, 85, 103
ungetc, 67
unreachable, 9
unreachable code, 93, 104, 105
unrecognized identifiers, 96
unused declarations, 9, 65, 95
use warnings, 104
use-before-definition, 9, 17, 38, 76, 92
van der Linden, Peter, 45, 63
varargs, 96
void, 47

