]> andersk Git - openssh.git/blame_incremental - key.c
- markus@cvs.openbsd.org 2003/02/03 08:56:16
[openssh.git] / key.c
... / ...
CommitLineData
1/*
2 * read_bignum():
3 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
4 *
5 * As far as I am concerned, the code I have written for this software
6 * can be used freely for any purpose. Any derived versions of this
7 * software must be clearly marked as such, and if the derived work is
8 * incompatible with the protocol description in the RFC file, it must be
9 * called by a name other than "ssh" or "Secure Shell".
10 *
11 *
12 * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34#include "includes.h"
35RCSID("$OpenBSD: key.c,v 1.49 2002/09/09 14:54:14 markus Exp $");
36
37#include <openssl/evp.h>
38
39#include "xmalloc.h"
40#include "key.h"
41#include "rsa.h"
42#include "ssh-dss.h"
43#include "ssh-rsa.h"
44#include "uuencode.h"
45#include "buffer.h"
46#include "bufaux.h"
47#include "log.h"
48
49Key *
50key_new(int type)
51{
52 Key *k;
53 RSA *rsa;
54 DSA *dsa;
55 k = xmalloc(sizeof(*k));
56 k->type = type;
57 k->flags = 0;
58 k->dsa = NULL;
59 k->rsa = NULL;
60 switch (k->type) {
61 case KEY_RSA1:
62 case KEY_RSA:
63 if ((rsa = RSA_new()) == NULL)
64 fatal("key_new: RSA_new failed");
65 if ((rsa->n = BN_new()) == NULL)
66 fatal("key_new: BN_new failed");
67 if ((rsa->e = BN_new()) == NULL)
68 fatal("key_new: BN_new failed");
69 k->rsa = rsa;
70 break;
71 case KEY_DSA:
72 if ((dsa = DSA_new()) == NULL)
73 fatal("key_new: DSA_new failed");
74 if ((dsa->p = BN_new()) == NULL)
75 fatal("key_new: BN_new failed");
76 if ((dsa->q = BN_new()) == NULL)
77 fatal("key_new: BN_new failed");
78 if ((dsa->g = BN_new()) == NULL)
79 fatal("key_new: BN_new failed");
80 if ((dsa->pub_key = BN_new()) == NULL)
81 fatal("key_new: BN_new failed");
82 k->dsa = dsa;
83 break;
84 case KEY_UNSPEC:
85 break;
86 default:
87 fatal("key_new: bad key type %d", k->type);
88 break;
89 }
90 return k;
91}
92
93Key *
94key_new_private(int type)
95{
96 Key *k = key_new(type);
97 switch (k->type) {
98 case KEY_RSA1:
99 case KEY_RSA:
100 if ((k->rsa->d = BN_new()) == NULL)
101 fatal("key_new_private: BN_new failed");
102 if ((k->rsa->iqmp = BN_new()) == NULL)
103 fatal("key_new_private: BN_new failed");
104 if ((k->rsa->q = BN_new()) == NULL)
105 fatal("key_new_private: BN_new failed");
106 if ((k->rsa->p = BN_new()) == NULL)
107 fatal("key_new_private: BN_new failed");
108 if ((k->rsa->dmq1 = BN_new()) == NULL)
109 fatal("key_new_private: BN_new failed");
110 if ((k->rsa->dmp1 = BN_new()) == NULL)
111 fatal("key_new_private: BN_new failed");
112 break;
113 case KEY_DSA:
114 if ((k->dsa->priv_key = BN_new()) == NULL)
115 fatal("key_new_private: BN_new failed");
116 break;
117 case KEY_UNSPEC:
118 break;
119 default:
120 break;
121 }
122 return k;
123}
124
125void
126key_free(Key *k)
127{
128 switch (k->type) {
129 case KEY_RSA1:
130 case KEY_RSA:
131 if (k->rsa != NULL)
132 RSA_free(k->rsa);
133 k->rsa = NULL;
134 break;
135 case KEY_DSA:
136 if (k->dsa != NULL)
137 DSA_free(k->dsa);
138 k->dsa = NULL;
139 break;
140 case KEY_UNSPEC:
141 break;
142 default:
143 fatal("key_free: bad key type %d", k->type);
144 break;
145 }
146 xfree(k);
147}
148int
149key_equal(Key *a, Key *b)
150{
151 if (a == NULL || b == NULL || a->type != b->type)
152 return 0;
153 switch (a->type) {
154 case KEY_RSA1:
155 case KEY_RSA:
156 return a->rsa != NULL && b->rsa != NULL &&
157 BN_cmp(a->rsa->e, b->rsa->e) == 0 &&
158 BN_cmp(a->rsa->n, b->rsa->n) == 0;
159 break;
160 case KEY_DSA:
161 return a->dsa != NULL && b->dsa != NULL &&
162 BN_cmp(a->dsa->p, b->dsa->p) == 0 &&
163 BN_cmp(a->dsa->q, b->dsa->q) == 0 &&
164 BN_cmp(a->dsa->g, b->dsa->g) == 0 &&
165 BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0;
166 break;
167 default:
168 fatal("key_equal: bad key type %d", a->type);
169 break;
170 }
171 return 0;
172}
173
174static u_char *
175key_fingerprint_raw(Key *k, enum fp_type dgst_type, u_int *dgst_raw_length)
176{
177 const EVP_MD *md = NULL;
178 EVP_MD_CTX ctx;
179 u_char *blob = NULL;
180 u_char *retval = NULL;
181 u_int len = 0;
182 int nlen, elen;
183
184 *dgst_raw_length = 0;
185
186 switch (dgst_type) {
187 case SSH_FP_MD5:
188 md = EVP_md5();
189 break;
190 case SSH_FP_SHA1:
191 md = EVP_sha1();
192 break;
193 default:
194 fatal("key_fingerprint_raw: bad digest type %d",
195 dgst_type);
196 }
197 switch (k->type) {
198 case KEY_RSA1:
199 nlen = BN_num_bytes(k->rsa->n);
200 elen = BN_num_bytes(k->rsa->e);
201 len = nlen + elen;
202 blob = xmalloc(len);
203 BN_bn2bin(k->rsa->n, blob);
204 BN_bn2bin(k->rsa->e, blob + nlen);
205 break;
206 case KEY_DSA:
207 case KEY_RSA:
208 key_to_blob(k, &blob, &len);
209 break;
210 case KEY_UNSPEC:
211 return retval;
212 break;
213 default:
214 fatal("key_fingerprint_raw: bad key type %d", k->type);
215 break;
216 }
217 if (blob != NULL) {
218 retval = xmalloc(EVP_MAX_MD_SIZE);
219 EVP_DigestInit(&ctx, md);
220 EVP_DigestUpdate(&ctx, blob, len);
221 EVP_DigestFinal(&ctx, retval, dgst_raw_length);
222 memset(blob, 0, len);
223 xfree(blob);
224 } else {
225 fatal("key_fingerprint_raw: blob is null");
226 }
227 return retval;
228}
229
230static char *
231key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len)
232{
233 char *retval;
234 int i;
235
236 retval = xmalloc(dgst_raw_len * 3 + 1);
237 retval[0] = '\0';
238 for (i = 0; i < dgst_raw_len; i++) {
239 char hex[4];
240 snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]);
241 strlcat(retval, hex, dgst_raw_len * 3);
242 }
243 retval[(dgst_raw_len * 3) - 1] = '\0';
244 return retval;
245}
246
247static char *
248key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len)
249{
250 char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
251 char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
252 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
253 u_int i, j = 0, rounds, seed = 1;
254 char *retval;
255
256 rounds = (dgst_raw_len / 2) + 1;
257 retval = xmalloc(sizeof(char) * (rounds*6));
258 retval[j++] = 'x';
259 for (i = 0; i < rounds; i++) {
260 u_int idx0, idx1, idx2, idx3, idx4;
261 if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) {
262 idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) +
263 seed) % 6;
264 idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15;
265 idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) +
266 (seed / 6)) % 6;
267 retval[j++] = vowels[idx0];
268 retval[j++] = consonants[idx1];
269 retval[j++] = vowels[idx2];
270 if ((i + 1) < rounds) {
271 idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15;
272 idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15;
273 retval[j++] = consonants[idx3];
274 retval[j++] = '-';
275 retval[j++] = consonants[idx4];
276 seed = ((seed * 5) +
277 ((((u_int)(dgst_raw[2 * i])) * 7) +
278 ((u_int)(dgst_raw[(2 * i) + 1])))) % 36;
279 }
280 } else {
281 idx0 = seed % 6;
282 idx1 = 16;
283 idx2 = seed / 6;
284 retval[j++] = vowels[idx0];
285 retval[j++] = consonants[idx1];
286 retval[j++] = vowels[idx2];
287 }
288 }
289 retval[j++] = 'x';
290 retval[j++] = '\0';
291 return retval;
292}
293
294char *
295key_fingerprint(Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep)
296{
297 char *retval = NULL;
298 u_char *dgst_raw;
299 u_int dgst_raw_len;
300
301 dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len);
302 if (!dgst_raw)
303 fatal("key_fingerprint: null from key_fingerprint_raw()");
304 switch (dgst_rep) {
305 case SSH_FP_HEX:
306 retval = key_fingerprint_hex(dgst_raw, dgst_raw_len);
307 break;
308 case SSH_FP_BUBBLEBABBLE:
309 retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len);
310 break;
311 default:
312 fatal("key_fingerprint_ex: bad digest representation %d",
313 dgst_rep);
314 break;
315 }
316 memset(dgst_raw, 0, dgst_raw_len);
317 xfree(dgst_raw);
318 return retval;
319}
320
321/*
322 * Reads a multiple-precision integer in decimal from the buffer, and advances
323 * the pointer. The integer must already be initialized. This function is
324 * permitted to modify the buffer. This leaves *cpp to point just beyond the
325 * last processed (and maybe modified) character. Note that this may modify
326 * the buffer containing the number.
327 */
328static int
329read_bignum(char **cpp, BIGNUM * value)
330{
331 char *cp = *cpp;
332 int old;
333
334 /* Skip any leading whitespace. */
335 for (; *cp == ' ' || *cp == '\t'; cp++)
336 ;
337
338 /* Check that it begins with a decimal digit. */
339 if (*cp < '0' || *cp > '9')
340 return 0;
341
342 /* Save starting position. */
343 *cpp = cp;
344
345 /* Move forward until all decimal digits skipped. */
346 for (; *cp >= '0' && *cp <= '9'; cp++)
347 ;
348
349 /* Save the old terminating character, and replace it by \0. */
350 old = *cp;
351 *cp = 0;
352
353 /* Parse the number. */
354 if (BN_dec2bn(&value, *cpp) == 0)
355 return 0;
356
357 /* Restore old terminating character. */
358 *cp = old;
359
360 /* Move beyond the number and return success. */
361 *cpp = cp;
362 return 1;
363}
364
365static int
366write_bignum(FILE *f, BIGNUM *num)
367{
368 char *buf = BN_bn2dec(num);
369 if (buf == NULL) {
370 error("write_bignum: BN_bn2dec() failed");
371 return 0;
372 }
373 fprintf(f, " %s", buf);
374 OPENSSL_free(buf);
375 return 1;
376}
377
378/* returns 1 ok, -1 error */
379int
380key_read(Key *ret, char **cpp)
381{
382 Key *k;
383 int success = -1;
384 char *cp, *space;
385 int len, n, type;
386 u_int bits;
387 u_char *blob;
388
389 cp = *cpp;
390
391 switch (ret->type) {
392 case KEY_RSA1:
393 /* Get number of bits. */
394 if (*cp < '0' || *cp > '9')
395 return -1; /* Bad bit count... */
396 for (bits = 0; *cp >= '0' && *cp <= '9'; cp++)
397 bits = 10 * bits + *cp - '0';
398 if (bits == 0)
399 return -1;
400 *cpp = cp;
401 /* Get public exponent, public modulus. */
402 if (!read_bignum(cpp, ret->rsa->e))
403 return -1;
404 if (!read_bignum(cpp, ret->rsa->n))
405 return -1;
406 success = 1;
407 break;
408 case KEY_UNSPEC:
409 case KEY_RSA:
410 case KEY_DSA:
411 space = strchr(cp, ' ');
412 if (space == NULL) {
413 debug3("key_read: no space");
414 return -1;
415 }
416 *space = '\0';
417 type = key_type_from_name(cp);
418 *space = ' ';
419 if (type == KEY_UNSPEC) {
420 debug3("key_read: no key found");
421 return -1;
422 }
423 cp = space+1;
424 if (*cp == '\0') {
425 debug3("key_read: short string");
426 return -1;
427 }
428 if (ret->type == KEY_UNSPEC) {
429 ret->type = type;
430 } else if (ret->type != type) {
431 /* is a key, but different type */
432 debug3("key_read: type mismatch");
433 return -1;
434 }
435 len = 2*strlen(cp);
436 blob = xmalloc(len);
437 n = uudecode(cp, blob, len);
438 if (n < 0) {
439 error("key_read: uudecode %s failed", cp);
440 xfree(blob);
441 return -1;
442 }
443 k = key_from_blob(blob, n);
444 xfree(blob);
445 if (k == NULL) {
446 error("key_read: key_from_blob %s failed", cp);
447 return -1;
448 }
449 if (k->type != type) {
450 error("key_read: type mismatch: encoding error");
451 key_free(k);
452 return -1;
453 }
454/*XXXX*/
455 if (ret->type == KEY_RSA) {
456 if (ret->rsa != NULL)
457 RSA_free(ret->rsa);
458 ret->rsa = k->rsa;
459 k->rsa = NULL;
460 success = 1;
461#ifdef DEBUG_PK
462 RSA_print_fp(stderr, ret->rsa, 8);
463#endif
464 } else {
465 if (ret->dsa != NULL)
466 DSA_free(ret->dsa);
467 ret->dsa = k->dsa;
468 k->dsa = NULL;
469 success = 1;
470#ifdef DEBUG_PK
471 DSA_print_fp(stderr, ret->dsa, 8);
472#endif
473 }
474/*XXXX*/
475 key_free(k);
476 if (success != 1)
477 break;
478 /* advance cp: skip whitespace and data */
479 while (*cp == ' ' || *cp == '\t')
480 cp++;
481 while (*cp != '\0' && *cp != ' ' && *cp != '\t')
482 cp++;
483 *cpp = cp;
484 break;
485 default:
486 fatal("key_read: bad key type: %d", ret->type);
487 break;
488 }
489 return success;
490}
491
492int
493key_write(Key *key, FILE *f)
494{
495 int n, success = 0;
496 u_int len, bits = 0;
497 u_char *blob;
498 char *uu;
499
500 if (key->type == KEY_RSA1 && key->rsa != NULL) {
501 /* size of modulus 'n' */
502 bits = BN_num_bits(key->rsa->n);
503 fprintf(f, "%u", bits);
504 if (write_bignum(f, key->rsa->e) &&
505 write_bignum(f, key->rsa->n)) {
506 success = 1;
507 } else {
508 error("key_write: failed for RSA key");
509 }
510 } else if ((key->type == KEY_DSA && key->dsa != NULL) ||
511 (key->type == KEY_RSA && key->rsa != NULL)) {
512 key_to_blob(key, &blob, &len);
513 uu = xmalloc(2*len);
514 n = uuencode(blob, len, uu, 2*len);
515 if (n > 0) {
516 fprintf(f, "%s %s", key_ssh_name(key), uu);
517 success = 1;
518 }
519 xfree(blob);
520 xfree(uu);
521 }
522 return success;
523}
524
525char *
526key_type(Key *k)
527{
528 switch (k->type) {
529 case KEY_RSA1:
530 return "RSA1";
531 break;
532 case KEY_RSA:
533 return "RSA";
534 break;
535 case KEY_DSA:
536 return "DSA";
537 break;
538 }
539 return "unknown";
540}
541
542char *
543key_ssh_name(Key *k)
544{
545 switch (k->type) {
546 case KEY_RSA:
547 return "ssh-rsa";
548 break;
549 case KEY_DSA:
550 return "ssh-dss";
551 break;
552 }
553 return "ssh-unknown";
554}
555
556u_int
557key_size(Key *k)
558{
559 switch (k->type) {
560 case KEY_RSA1:
561 case KEY_RSA:
562 return BN_num_bits(k->rsa->n);
563 break;
564 case KEY_DSA:
565 return BN_num_bits(k->dsa->p);
566 break;
567 }
568 return 0;
569}
570
571static RSA *
572rsa_generate_private_key(u_int bits)
573{
574 RSA *private;
575 private = RSA_generate_key(bits, 35, NULL, NULL);
576 if (private == NULL)
577 fatal("rsa_generate_private_key: key generation failed.");
578 return private;
579}
580
581static DSA*
582dsa_generate_private_key(u_int bits)
583{
584 DSA *private = DSA_generate_parameters(bits, NULL, 0, NULL, NULL, NULL, NULL);
585 if (private == NULL)
586 fatal("dsa_generate_private_key: DSA_generate_parameters failed");
587 if (!DSA_generate_key(private))
588 fatal("dsa_generate_private_key: DSA_generate_key failed.");
589 if (private == NULL)
590 fatal("dsa_generate_private_key: NULL.");
591 return private;
592}
593
594Key *
595key_generate(int type, u_int bits)
596{
597 Key *k = key_new(KEY_UNSPEC);
598 switch (type) {
599 case KEY_DSA:
600 k->dsa = dsa_generate_private_key(bits);
601 break;
602 case KEY_RSA:
603 case KEY_RSA1:
604 k->rsa = rsa_generate_private_key(bits);
605 break;
606 default:
607 fatal("key_generate: unknown type %d", type);
608 }
609 k->type = type;
610 return k;
611}
612
613Key *
614key_from_private(Key *k)
615{
616 Key *n = NULL;
617 switch (k->type) {
618 case KEY_DSA:
619 n = key_new(k->type);
620 BN_copy(n->dsa->p, k->dsa->p);
621 BN_copy(n->dsa->q, k->dsa->q);
622 BN_copy(n->dsa->g, k->dsa->g);
623 BN_copy(n->dsa->pub_key, k->dsa->pub_key);
624 break;
625 case KEY_RSA:
626 case KEY_RSA1:
627 n = key_new(k->type);
628 BN_copy(n->rsa->n, k->rsa->n);
629 BN_copy(n->rsa->e, k->rsa->e);
630 break;
631 default:
632 fatal("key_from_private: unknown type %d", k->type);
633 break;
634 }
635 return n;
636}
637
638int
639key_type_from_name(char *name)
640{
641 if (strcmp(name, "rsa1") == 0) {
642 return KEY_RSA1;
643 } else if (strcmp(name, "rsa") == 0) {
644 return KEY_RSA;
645 } else if (strcmp(name, "dsa") == 0) {
646 return KEY_DSA;
647 } else if (strcmp(name, "ssh-rsa") == 0) {
648 return KEY_RSA;
649 } else if (strcmp(name, "ssh-dss") == 0) {
650 return KEY_DSA;
651 }
652 debug2("key_type_from_name: unknown key type '%s'", name);
653 return KEY_UNSPEC;
654}
655
656int
657key_names_valid2(const char *names)
658{
659 char *s, *cp, *p;
660
661 if (names == NULL || strcmp(names, "") == 0)
662 return 0;
663 s = cp = xstrdup(names);
664 for ((p = strsep(&cp, ",")); p && *p != '\0';
665 (p = strsep(&cp, ","))) {
666 switch (key_type_from_name(p)) {
667 case KEY_RSA1:
668 case KEY_UNSPEC:
669 xfree(s);
670 return 0;
671 }
672 }
673 debug3("key names ok: [%s]", names);
674 xfree(s);
675 return 1;
676}
677
678Key *
679key_from_blob(u_char *blob, int blen)
680{
681 Buffer b;
682 char *ktype;
683 int rlen, type;
684 Key *key = NULL;
685
686#ifdef DEBUG_PK
687 dump_base64(stderr, blob, blen);
688#endif
689 buffer_init(&b);
690 buffer_append(&b, blob, blen);
691 ktype = buffer_get_string(&b, NULL);
692 type = key_type_from_name(ktype);
693
694 switch (type) {
695 case KEY_RSA:
696 key = key_new(type);
697 buffer_get_bignum2(&b, key->rsa->e);
698 buffer_get_bignum2(&b, key->rsa->n);
699#ifdef DEBUG_PK
700 RSA_print_fp(stderr, key->rsa, 8);
701#endif
702 break;
703 case KEY_DSA:
704 key = key_new(type);
705 buffer_get_bignum2(&b, key->dsa->p);
706 buffer_get_bignum2(&b, key->dsa->q);
707 buffer_get_bignum2(&b, key->dsa->g);
708 buffer_get_bignum2(&b, key->dsa->pub_key);
709#ifdef DEBUG_PK
710 DSA_print_fp(stderr, key->dsa, 8);
711#endif
712 break;
713 case KEY_UNSPEC:
714 key = key_new(type);
715 break;
716 default:
717 error("key_from_blob: cannot handle type %s", ktype);
718 break;
719 }
720 rlen = buffer_len(&b);
721 if (key != NULL && rlen != 0)
722 error("key_from_blob: remaining bytes in key blob %d", rlen);
723 xfree(ktype);
724 buffer_free(&b);
725 return key;
726}
727
728int
729key_to_blob(Key *key, u_char **blobp, u_int *lenp)
730{
731 Buffer b;
732 int len;
733
734 if (key == NULL) {
735 error("key_to_blob: key == NULL");
736 return 0;
737 }
738 buffer_init(&b);
739 switch (key->type) {
740 case KEY_DSA:
741 buffer_put_cstring(&b, key_ssh_name(key));
742 buffer_put_bignum2(&b, key->dsa->p);
743 buffer_put_bignum2(&b, key->dsa->q);
744 buffer_put_bignum2(&b, key->dsa->g);
745 buffer_put_bignum2(&b, key->dsa->pub_key);
746 break;
747 case KEY_RSA:
748 buffer_put_cstring(&b, key_ssh_name(key));
749 buffer_put_bignum2(&b, key->rsa->e);
750 buffer_put_bignum2(&b, key->rsa->n);
751 break;
752 default:
753 error("key_to_blob: unsupported key type %d", key->type);
754 buffer_free(&b);
755 return 0;
756 }
757 len = buffer_len(&b);
758 if (lenp != NULL)
759 *lenp = len;
760 if (blobp != NULL) {
761 *blobp = xmalloc(len);
762 memcpy(*blobp, buffer_ptr(&b), len);
763 }
764 memset(buffer_ptr(&b), 0, len);
765 buffer_free(&b);
766 return len;
767}
768
769int
770key_sign(
771 Key *key,
772 u_char **sigp, u_int *lenp,
773 u_char *data, u_int datalen)
774{
775 switch (key->type) {
776 case KEY_DSA:
777 return ssh_dss_sign(key, sigp, lenp, data, datalen);
778 break;
779 case KEY_RSA:
780 return ssh_rsa_sign(key, sigp, lenp, data, datalen);
781 break;
782 default:
783 error("key_sign: illegal key type %d", key->type);
784 return -1;
785 break;
786 }
787}
788
789/*
790 * key_verify returns 1 for a correct signature, 0 for an incorrect signature
791 * and -1 on error.
792 */
793int
794key_verify(
795 Key *key,
796 u_char *signature, u_int signaturelen,
797 u_char *data, u_int datalen)
798{
799 if (signaturelen == 0)
800 return -1;
801
802 switch (key->type) {
803 case KEY_DSA:
804 return ssh_dss_verify(key, signature, signaturelen, data, datalen);
805 break;
806 case KEY_RSA:
807 return ssh_rsa_verify(key, signature, signaturelen, data, datalen);
808 break;
809 default:
810 error("key_verify: illegal key type %d", key->type);
811 return -1;
812 break;
813 }
814}
815
816/* Converts a private to a public key */
817Key *
818key_demote(Key *k)
819{
820 Key *pk;
821
822 pk = xmalloc(sizeof(*pk));
823 pk->type = k->type;
824 pk->flags = k->flags;
825 pk->dsa = NULL;
826 pk->rsa = NULL;
827
828 switch (k->type) {
829 case KEY_RSA1:
830 case KEY_RSA:
831 if ((pk->rsa = RSA_new()) == NULL)
832 fatal("key_demote: RSA_new failed");
833 if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL)
834 fatal("key_demote: BN_dup failed");
835 if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL)
836 fatal("key_demote: BN_dup failed");
837 break;
838 case KEY_DSA:
839 if ((pk->dsa = DSA_new()) == NULL)
840 fatal("key_demote: DSA_new failed");
841 if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL)
842 fatal("key_demote: BN_dup failed");
843 if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL)
844 fatal("key_demote: BN_dup failed");
845 if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL)
846 fatal("key_demote: BN_dup failed");
847 if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL)
848 fatal("key_demote: BN_dup failed");
849 break;
850 default:
851 fatal("key_free: bad key type %d", k->type);
852 break;
853 }
854
855 return (pk);
856}
This page took 0.097347 seconds and 5 git commands to generate.