]> andersk Git - openssh.git/blame_incremental - key.c
- djm@cvs.openbsd.org 2010/01/30 02:54:53
[openssh.git] / key.c
... / ...
CommitLineData
1/* $OpenBSD: key.c,v 1.82 2010/01/13 01:10:56 dtucker Exp $ */
2/*
3 * read_bignum():
4 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
5 *
6 * As far as I am concerned, the code I have written for this software
7 * can be used freely for any purpose. Any derived versions of this
8 * software must be clearly marked as such, and if the derived work is
9 * incompatible with the protocol description in the RFC file, it must be
10 * called by a name other than "ssh" or "Secure Shell".
11 *
12 *
13 * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved.
14 * Copyright (c) 2008 Alexander von Gernler. All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
26 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
27 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
28 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
30 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37#include "includes.h"
38
39#include <sys/param.h>
40#include <sys/types.h>
41
42#include <openssl/evp.h>
43#include <openbsd-compat/openssl-compat.h>
44
45#include <stdarg.h>
46#include <stdio.h>
47#include <string.h>
48
49#include "xmalloc.h"
50#include "key.h"
51#include "rsa.h"
52#include "uuencode.h"
53#include "buffer.h"
54#include "log.h"
55
56Key *
57key_new(int type)
58{
59 Key *k;
60 RSA *rsa;
61 DSA *dsa;
62 k = xcalloc(1, sizeof(*k));
63 k->type = type;
64 k->dsa = NULL;
65 k->rsa = NULL;
66 switch (k->type) {
67 case KEY_RSA1:
68 case KEY_RSA:
69 if ((rsa = RSA_new()) == NULL)
70 fatal("key_new: RSA_new failed");
71 if ((rsa->n = BN_new()) == NULL)
72 fatal("key_new: BN_new failed");
73 if ((rsa->e = BN_new()) == NULL)
74 fatal("key_new: BN_new failed");
75 k->rsa = rsa;
76 break;
77 case KEY_DSA:
78 if ((dsa = DSA_new()) == NULL)
79 fatal("key_new: DSA_new failed");
80 if ((dsa->p = BN_new()) == NULL)
81 fatal("key_new: BN_new failed");
82 if ((dsa->q = BN_new()) == NULL)
83 fatal("key_new: BN_new failed");
84 if ((dsa->g = BN_new()) == NULL)
85 fatal("key_new: BN_new failed");
86 if ((dsa->pub_key = BN_new()) == NULL)
87 fatal("key_new: BN_new failed");
88 k->dsa = dsa;
89 break;
90 case KEY_UNSPEC:
91 break;
92 default:
93 fatal("key_new: bad key type %d", k->type);
94 break;
95 }
96 return k;
97}
98
99Key *
100key_new_private(int type)
101{
102 Key *k = key_new(type);
103 switch (k->type) {
104 case KEY_RSA1:
105 case KEY_RSA:
106 if ((k->rsa->d = BN_new()) == NULL)
107 fatal("key_new_private: BN_new failed");
108 if ((k->rsa->iqmp = BN_new()) == NULL)
109 fatal("key_new_private: BN_new failed");
110 if ((k->rsa->q = BN_new()) == NULL)
111 fatal("key_new_private: BN_new failed");
112 if ((k->rsa->p = BN_new()) == NULL)
113 fatal("key_new_private: BN_new failed");
114 if ((k->rsa->dmq1 = BN_new()) == NULL)
115 fatal("key_new_private: BN_new failed");
116 if ((k->rsa->dmp1 = BN_new()) == NULL)
117 fatal("key_new_private: BN_new failed");
118 break;
119 case KEY_DSA:
120 if ((k->dsa->priv_key = BN_new()) == NULL)
121 fatal("key_new_private: BN_new failed");
122 break;
123 case KEY_UNSPEC:
124 break;
125 default:
126 break;
127 }
128 return k;
129}
130
131void
132key_free(Key *k)
133{
134 if (k == NULL)
135 fatal("key_free: key is NULL");
136 switch (k->type) {
137 case KEY_RSA1:
138 case KEY_RSA:
139 if (k->rsa != NULL)
140 RSA_free(k->rsa);
141 k->rsa = NULL;
142 break;
143 case KEY_DSA:
144 if (k->dsa != NULL)
145 DSA_free(k->dsa);
146 k->dsa = NULL;
147 break;
148 case KEY_UNSPEC:
149 break;
150 default:
151 fatal("key_free: bad key type %d", k->type);
152 break;
153 }
154 xfree(k);
155}
156
157int
158key_equal(const Key *a, const Key *b)
159{
160 if (a == NULL || b == NULL || a->type != b->type)
161 return 0;
162 switch (a->type) {
163 case KEY_RSA1:
164 case KEY_RSA:
165 return a->rsa != NULL && b->rsa != NULL &&
166 BN_cmp(a->rsa->e, b->rsa->e) == 0 &&
167 BN_cmp(a->rsa->n, b->rsa->n) == 0;
168 case KEY_DSA:
169 return a->dsa != NULL && b->dsa != NULL &&
170 BN_cmp(a->dsa->p, b->dsa->p) == 0 &&
171 BN_cmp(a->dsa->q, b->dsa->q) == 0 &&
172 BN_cmp(a->dsa->g, b->dsa->g) == 0 &&
173 BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0;
174 default:
175 fatal("key_equal: bad key type %d", a->type);
176 }
177 /* NOTREACHED */
178}
179
180u_char*
181key_fingerprint_raw(const Key *k, enum fp_type dgst_type,
182 u_int *dgst_raw_length)
183{
184 const EVP_MD *md = NULL;
185 EVP_MD_CTX ctx;
186 u_char *blob = NULL;
187 u_char *retval = NULL;
188 u_int len = 0;
189 int nlen, elen;
190
191 *dgst_raw_length = 0;
192
193 switch (dgst_type) {
194 case SSH_FP_MD5:
195 md = EVP_md5();
196 break;
197 case SSH_FP_SHA1:
198 md = EVP_sha1();
199 break;
200 default:
201 fatal("key_fingerprint_raw: bad digest type %d",
202 dgst_type);
203 }
204 switch (k->type) {
205 case KEY_RSA1:
206 nlen = BN_num_bytes(k->rsa->n);
207 elen = BN_num_bytes(k->rsa->e);
208 len = nlen + elen;
209 blob = xmalloc(len);
210 BN_bn2bin(k->rsa->n, blob);
211 BN_bn2bin(k->rsa->e, blob + nlen);
212 break;
213 case KEY_DSA:
214 case KEY_RSA:
215 key_to_blob(k, &blob, &len);
216 break;
217 case KEY_UNSPEC:
218 return retval;
219 default:
220 fatal("key_fingerprint_raw: bad key type %d", k->type);
221 break;
222 }
223 if (blob != NULL) {
224 retval = xmalloc(EVP_MAX_MD_SIZE);
225 EVP_DigestInit(&ctx, md);
226 EVP_DigestUpdate(&ctx, blob, len);
227 EVP_DigestFinal(&ctx, retval, dgst_raw_length);
228 memset(blob, 0, len);
229 xfree(blob);
230 } else {
231 fatal("key_fingerprint_raw: blob is null");
232 }
233 return retval;
234}
235
236static char *
237key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len)
238{
239 char *retval;
240 u_int i;
241
242 retval = xcalloc(1, dgst_raw_len * 3 + 1);
243 for (i = 0; i < dgst_raw_len; i++) {
244 char hex[4];
245 snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]);
246 strlcat(retval, hex, dgst_raw_len * 3 + 1);
247 }
248
249 /* Remove the trailing ':' character */
250 retval[(dgst_raw_len * 3) - 1] = '\0';
251 return retval;
252}
253
254static char *
255key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len)
256{
257 char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
258 char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
259 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
260 u_int i, j = 0, rounds, seed = 1;
261 char *retval;
262
263 rounds = (dgst_raw_len / 2) + 1;
264 retval = xcalloc((rounds * 6), sizeof(char));
265 retval[j++] = 'x';
266 for (i = 0; i < rounds; i++) {
267 u_int idx0, idx1, idx2, idx3, idx4;
268 if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) {
269 idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) +
270 seed) % 6;
271 idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15;
272 idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) +
273 (seed / 6)) % 6;
274 retval[j++] = vowels[idx0];
275 retval[j++] = consonants[idx1];
276 retval[j++] = vowels[idx2];
277 if ((i + 1) < rounds) {
278 idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15;
279 idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15;
280 retval[j++] = consonants[idx3];
281 retval[j++] = '-';
282 retval[j++] = consonants[idx4];
283 seed = ((seed * 5) +
284 ((((u_int)(dgst_raw[2 * i])) * 7) +
285 ((u_int)(dgst_raw[(2 * i) + 1])))) % 36;
286 }
287 } else {
288 idx0 = seed % 6;
289 idx1 = 16;
290 idx2 = seed / 6;
291 retval[j++] = vowels[idx0];
292 retval[j++] = consonants[idx1];
293 retval[j++] = vowels[idx2];
294 }
295 }
296 retval[j++] = 'x';
297 retval[j++] = '\0';
298 return retval;
299}
300
301/*
302 * Draw an ASCII-Art representing the fingerprint so human brain can
303 * profit from its built-in pattern recognition ability.
304 * This technique is called "random art" and can be found in some
305 * scientific publications like this original paper:
306 *
307 * "Hash Visualization: a New Technique to improve Real-World Security",
308 * Perrig A. and Song D., 1999, International Workshop on Cryptographic
309 * Techniques and E-Commerce (CrypTEC '99)
310 * sparrow.ece.cmu.edu/~adrian/projects/validation/validation.pdf
311 *
312 * The subject came up in a talk by Dan Kaminsky, too.
313 *
314 * If you see the picture is different, the key is different.
315 * If the picture looks the same, you still know nothing.
316 *
317 * The algorithm used here is a worm crawling over a discrete plane,
318 * leaving a trace (augmenting the field) everywhere it goes.
319 * Movement is taken from dgst_raw 2bit-wise. Bumping into walls
320 * makes the respective movement vector be ignored for this turn.
321 * Graphs are not unambiguous, because circles in graphs can be
322 * walked in either direction.
323 */
324
325/*
326 * Field sizes for the random art. Have to be odd, so the starting point
327 * can be in the exact middle of the picture, and FLDBASE should be >=8 .
328 * Else pictures would be too dense, and drawing the frame would
329 * fail, too, because the key type would not fit in anymore.
330 */
331#define FLDBASE 8
332#define FLDSIZE_Y (FLDBASE + 1)
333#define FLDSIZE_X (FLDBASE * 2 + 1)
334static char *
335key_fingerprint_randomart(u_char *dgst_raw, u_int dgst_raw_len, const Key *k)
336{
337 /*
338 * Chars to be used after each other every time the worm
339 * intersects with itself. Matter of taste.
340 */
341 char *augmentation_string = " .o+=*BOX@%&#/^SE";
342 char *retval, *p;
343 u_char field[FLDSIZE_X][FLDSIZE_Y];
344 u_int i, b;
345 int x, y;
346 size_t len = strlen(augmentation_string) - 1;
347
348 retval = xcalloc(1, (FLDSIZE_X + 3) * (FLDSIZE_Y + 2));
349
350 /* initialize field */
351 memset(field, 0, FLDSIZE_X * FLDSIZE_Y * sizeof(char));
352 x = FLDSIZE_X / 2;
353 y = FLDSIZE_Y / 2;
354
355 /* process raw key */
356 for (i = 0; i < dgst_raw_len; i++) {
357 int input;
358 /* each byte conveys four 2-bit move commands */
359 input = dgst_raw[i];
360 for (b = 0; b < 4; b++) {
361 /* evaluate 2 bit, rest is shifted later */
362 x += (input & 0x1) ? 1 : -1;
363 y += (input & 0x2) ? 1 : -1;
364
365 /* assure we are still in bounds */
366 x = MAX(x, 0);
367 y = MAX(y, 0);
368 x = MIN(x, FLDSIZE_X - 1);
369 y = MIN(y, FLDSIZE_Y - 1);
370
371 /* augment the field */
372 if (field[x][y] < len - 2)
373 field[x][y]++;
374 input = input >> 2;
375 }
376 }
377
378 /* mark starting point and end point*/
379 field[FLDSIZE_X / 2][FLDSIZE_Y / 2] = len - 1;
380 field[x][y] = len;
381
382 /* fill in retval */
383 snprintf(retval, FLDSIZE_X, "+--[%4s %4u]", key_type(k), key_size(k));
384 p = strchr(retval, '\0');
385
386 /* output upper border */
387 for (i = p - retval - 1; i < FLDSIZE_X; i++)
388 *p++ = '-';
389 *p++ = '+';
390 *p++ = '\n';
391
392 /* output content */
393 for (y = 0; y < FLDSIZE_Y; y++) {
394 *p++ = '|';
395 for (x = 0; x < FLDSIZE_X; x++)
396 *p++ = augmentation_string[MIN(field[x][y], len)];
397 *p++ = '|';
398 *p++ = '\n';
399 }
400
401 /* output lower border */
402 *p++ = '+';
403 for (i = 0; i < FLDSIZE_X; i++)
404 *p++ = '-';
405 *p++ = '+';
406
407 return retval;
408}
409
410char *
411key_fingerprint(const Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep)
412{
413 char *retval = NULL;
414 u_char *dgst_raw;
415 u_int dgst_raw_len;
416
417 dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len);
418 if (!dgst_raw)
419 fatal("key_fingerprint: null from key_fingerprint_raw()");
420 switch (dgst_rep) {
421 case SSH_FP_HEX:
422 retval = key_fingerprint_hex(dgst_raw, dgst_raw_len);
423 break;
424 case SSH_FP_BUBBLEBABBLE:
425 retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len);
426 break;
427 case SSH_FP_RANDOMART:
428 retval = key_fingerprint_randomart(dgst_raw, dgst_raw_len, k);
429 break;
430 default:
431 fatal("key_fingerprint: bad digest representation %d",
432 dgst_rep);
433 break;
434 }
435 memset(dgst_raw, 0, dgst_raw_len);
436 xfree(dgst_raw);
437 return retval;
438}
439
440/*
441 * Reads a multiple-precision integer in decimal from the buffer, and advances
442 * the pointer. The integer must already be initialized. This function is
443 * permitted to modify the buffer. This leaves *cpp to point just beyond the
444 * last processed (and maybe modified) character. Note that this may modify
445 * the buffer containing the number.
446 */
447static int
448read_bignum(char **cpp, BIGNUM * value)
449{
450 char *cp = *cpp;
451 int old;
452
453 /* Skip any leading whitespace. */
454 for (; *cp == ' ' || *cp == '\t'; cp++)
455 ;
456
457 /* Check that it begins with a decimal digit. */
458 if (*cp < '0' || *cp > '9')
459 return 0;
460
461 /* Save starting position. */
462 *cpp = cp;
463
464 /* Move forward until all decimal digits skipped. */
465 for (; *cp >= '0' && *cp <= '9'; cp++)
466 ;
467
468 /* Save the old terminating character, and replace it by \0. */
469 old = *cp;
470 *cp = 0;
471
472 /* Parse the number. */
473 if (BN_dec2bn(&value, *cpp) == 0)
474 return 0;
475
476 /* Restore old terminating character. */
477 *cp = old;
478
479 /* Move beyond the number and return success. */
480 *cpp = cp;
481 return 1;
482}
483
484static int
485write_bignum(FILE *f, BIGNUM *num)
486{
487 char *buf = BN_bn2dec(num);
488 if (buf == NULL) {
489 error("write_bignum: BN_bn2dec() failed");
490 return 0;
491 }
492 fprintf(f, " %s", buf);
493 OPENSSL_free(buf);
494 return 1;
495}
496
497/* returns 1 ok, -1 error */
498int
499key_read(Key *ret, char **cpp)
500{
501 Key *k;
502 int success = -1;
503 char *cp, *space;
504 int len, n, type;
505 u_int bits;
506 u_char *blob;
507
508 cp = *cpp;
509
510 switch (ret->type) {
511 case KEY_RSA1:
512 /* Get number of bits. */
513 if (*cp < '0' || *cp > '9')
514 return -1; /* Bad bit count... */
515 for (bits = 0; *cp >= '0' && *cp <= '9'; cp++)
516 bits = 10 * bits + *cp - '0';
517 if (bits == 0)
518 return -1;
519 *cpp = cp;
520 /* Get public exponent, public modulus. */
521 if (!read_bignum(cpp, ret->rsa->e))
522 return -1;
523 if (!read_bignum(cpp, ret->rsa->n))
524 return -1;
525 /* validate the claimed number of bits */
526 if ((u_int)BN_num_bits(ret->rsa->n) != bits) {
527 verbose("key_read: claimed key size %d does not match "
528 "actual %d", bits, BN_num_bits(ret->rsa->n));
529 return -1;
530 }
531 success = 1;
532 break;
533 case KEY_UNSPEC:
534 case KEY_RSA:
535 case KEY_DSA:
536 space = strchr(cp, ' ');
537 if (space == NULL) {
538 debug3("key_read: missing whitespace");
539 return -1;
540 }
541 *space = '\0';
542 type = key_type_from_name(cp);
543 *space = ' ';
544 if (type == KEY_UNSPEC) {
545 debug3("key_read: missing keytype");
546 return -1;
547 }
548 cp = space+1;
549 if (*cp == '\0') {
550 debug3("key_read: short string");
551 return -1;
552 }
553 if (ret->type == KEY_UNSPEC) {
554 ret->type = type;
555 } else if (ret->type != type) {
556 /* is a key, but different type */
557 debug3("key_read: type mismatch");
558 return -1;
559 }
560 len = 2*strlen(cp);
561 blob = xmalloc(len);
562 n = uudecode(cp, blob, len);
563 if (n < 0) {
564 error("key_read: uudecode %s failed", cp);
565 xfree(blob);
566 return -1;
567 }
568 k = key_from_blob(blob, (u_int)n);
569 xfree(blob);
570 if (k == NULL) {
571 error("key_read: key_from_blob %s failed", cp);
572 return -1;
573 }
574 if (k->type != type) {
575 error("key_read: type mismatch: encoding error");
576 key_free(k);
577 return -1;
578 }
579/*XXXX*/
580 if (ret->type == KEY_RSA) {
581 if (ret->rsa != NULL)
582 RSA_free(ret->rsa);
583 ret->rsa = k->rsa;
584 k->rsa = NULL;
585 success = 1;
586#ifdef DEBUG_PK
587 RSA_print_fp(stderr, ret->rsa, 8);
588#endif
589 } else {
590 if (ret->dsa != NULL)
591 DSA_free(ret->dsa);
592 ret->dsa = k->dsa;
593 k->dsa = NULL;
594 success = 1;
595#ifdef DEBUG_PK
596 DSA_print_fp(stderr, ret->dsa, 8);
597#endif
598 }
599/*XXXX*/
600 key_free(k);
601 if (success != 1)
602 break;
603 /* advance cp: skip whitespace and data */
604 while (*cp == ' ' || *cp == '\t')
605 cp++;
606 while (*cp != '\0' && *cp != ' ' && *cp != '\t')
607 cp++;
608 *cpp = cp;
609 break;
610 default:
611 fatal("key_read: bad key type: %d", ret->type);
612 break;
613 }
614 return success;
615}
616
617int
618key_write(const Key *key, FILE *f)
619{
620 int n, success = 0;
621 u_int len, bits = 0;
622 u_char *blob;
623 char *uu;
624
625 if (key->type == KEY_RSA1 && key->rsa != NULL) {
626 /* size of modulus 'n' */
627 bits = BN_num_bits(key->rsa->n);
628 fprintf(f, "%u", bits);
629 if (write_bignum(f, key->rsa->e) &&
630 write_bignum(f, key->rsa->n)) {
631 success = 1;
632 } else {
633 error("key_write: failed for RSA key");
634 }
635 } else if ((key->type == KEY_DSA && key->dsa != NULL) ||
636 (key->type == KEY_RSA && key->rsa != NULL)) {
637 key_to_blob(key, &blob, &len);
638 uu = xmalloc(2*len);
639 n = uuencode(blob, len, uu, 2*len);
640 if (n > 0) {
641 fprintf(f, "%s %s", key_ssh_name(key), uu);
642 success = 1;
643 }
644 xfree(blob);
645 xfree(uu);
646 }
647 return success;
648}
649
650const char *
651key_type(const Key *k)
652{
653 switch (k->type) {
654 case KEY_RSA1:
655 return "RSA1";
656 case KEY_RSA:
657 return "RSA";
658 case KEY_DSA:
659 return "DSA";
660 }
661 return "unknown";
662}
663
664const char *
665key_ssh_name(const Key *k)
666{
667 switch (k->type) {
668 case KEY_RSA:
669 return "ssh-rsa";
670 case KEY_DSA:
671 return "ssh-dss";
672 }
673 return "ssh-unknown";
674}
675
676u_int
677key_size(const Key *k)
678{
679 switch (k->type) {
680 case KEY_RSA1:
681 case KEY_RSA:
682 return BN_num_bits(k->rsa->n);
683 case KEY_DSA:
684 return BN_num_bits(k->dsa->p);
685 }
686 return 0;
687}
688
689static RSA *
690rsa_generate_private_key(u_int bits)
691{
692 RSA *private;
693
694 private = RSA_generate_key(bits, RSA_F4, NULL, NULL);
695 if (private == NULL)
696 fatal("rsa_generate_private_key: key generation failed.");
697 return private;
698}
699
700static DSA*
701dsa_generate_private_key(u_int bits)
702{
703 DSA *private = DSA_generate_parameters(bits, NULL, 0, NULL, NULL, NULL, NULL);
704
705 if (private == NULL)
706 fatal("dsa_generate_private_key: DSA_generate_parameters failed");
707 if (!DSA_generate_key(private))
708 fatal("dsa_generate_private_key: DSA_generate_key failed.");
709 if (private == NULL)
710 fatal("dsa_generate_private_key: NULL.");
711 return private;
712}
713
714Key *
715key_generate(int type, u_int bits)
716{
717 Key *k = key_new(KEY_UNSPEC);
718 switch (type) {
719 case KEY_DSA:
720 k->dsa = dsa_generate_private_key(bits);
721 break;
722 case KEY_RSA:
723 case KEY_RSA1:
724 k->rsa = rsa_generate_private_key(bits);
725 break;
726 default:
727 fatal("key_generate: unknown type %d", type);
728 }
729 k->type = type;
730 return k;
731}
732
733Key *
734key_from_private(const Key *k)
735{
736 Key *n = NULL;
737 switch (k->type) {
738 case KEY_DSA:
739 n = key_new(k->type);
740 if ((BN_copy(n->dsa->p, k->dsa->p) == NULL) ||
741 (BN_copy(n->dsa->q, k->dsa->q) == NULL) ||
742 (BN_copy(n->dsa->g, k->dsa->g) == NULL) ||
743 (BN_copy(n->dsa->pub_key, k->dsa->pub_key) == NULL))
744 fatal("key_from_private: BN_copy failed");
745 break;
746 case KEY_RSA:
747 case KEY_RSA1:
748 n = key_new(k->type);
749 if ((BN_copy(n->rsa->n, k->rsa->n) == NULL) ||
750 (BN_copy(n->rsa->e, k->rsa->e) == NULL))
751 fatal("key_from_private: BN_copy failed");
752 break;
753 default:
754 fatal("key_from_private: unknown type %d", k->type);
755 break;
756 }
757 return n;
758}
759
760int
761key_type_from_name(char *name)
762{
763 if (strcmp(name, "rsa1") == 0) {
764 return KEY_RSA1;
765 } else if (strcmp(name, "rsa") == 0) {
766 return KEY_RSA;
767 } else if (strcmp(name, "dsa") == 0) {
768 return KEY_DSA;
769 } else if (strcmp(name, "ssh-rsa") == 0) {
770 return KEY_RSA;
771 } else if (strcmp(name, "ssh-dss") == 0) {
772 return KEY_DSA;
773 }
774 debug2("key_type_from_name: unknown key type '%s'", name);
775 return KEY_UNSPEC;
776}
777
778int
779key_names_valid2(const char *names)
780{
781 char *s, *cp, *p;
782
783 if (names == NULL || strcmp(names, "") == 0)
784 return 0;
785 s = cp = xstrdup(names);
786 for ((p = strsep(&cp, ",")); p && *p != '\0';
787 (p = strsep(&cp, ","))) {
788 switch (key_type_from_name(p)) {
789 case KEY_RSA1:
790 case KEY_UNSPEC:
791 xfree(s);
792 return 0;
793 }
794 }
795 debug3("key names ok: [%s]", names);
796 xfree(s);
797 return 1;
798}
799
800Key *
801key_from_blob(const u_char *blob, u_int blen)
802{
803 Buffer b;
804 int rlen, type;
805 char *ktype = NULL;
806 Key *key = NULL;
807
808#ifdef DEBUG_PK
809 dump_base64(stderr, blob, blen);
810#endif
811 buffer_init(&b);
812 buffer_append(&b, blob, blen);
813 if ((ktype = buffer_get_string_ret(&b, NULL)) == NULL) {
814 error("key_from_blob: can't read key type");
815 goto out;
816 }
817
818 type = key_type_from_name(ktype);
819
820 switch (type) {
821 case KEY_RSA:
822 key = key_new(type);
823 if (buffer_get_bignum2_ret(&b, key->rsa->e) == -1 ||
824 buffer_get_bignum2_ret(&b, key->rsa->n) == -1) {
825 error("key_from_blob: can't read rsa key");
826 key_free(key);
827 key = NULL;
828 goto out;
829 }
830#ifdef DEBUG_PK
831 RSA_print_fp(stderr, key->rsa, 8);
832#endif
833 break;
834 case KEY_DSA:
835 key = key_new(type);
836 if (buffer_get_bignum2_ret(&b, key->dsa->p) == -1 ||
837 buffer_get_bignum2_ret(&b, key->dsa->q) == -1 ||
838 buffer_get_bignum2_ret(&b, key->dsa->g) == -1 ||
839 buffer_get_bignum2_ret(&b, key->dsa->pub_key) == -1) {
840 error("key_from_blob: can't read dsa key");
841 key_free(key);
842 key = NULL;
843 goto out;
844 }
845#ifdef DEBUG_PK
846 DSA_print_fp(stderr, key->dsa, 8);
847#endif
848 break;
849 case KEY_UNSPEC:
850 key = key_new(type);
851 break;
852 default:
853 error("key_from_blob: cannot handle type %s", ktype);
854 goto out;
855 }
856 rlen = buffer_len(&b);
857 if (key != NULL && rlen != 0)
858 error("key_from_blob: remaining bytes in key blob %d", rlen);
859 out:
860 if (ktype != NULL)
861 xfree(ktype);
862 buffer_free(&b);
863 return key;
864}
865
866int
867key_to_blob(const Key *key, u_char **blobp, u_int *lenp)
868{
869 Buffer b;
870 int len;
871
872 if (key == NULL) {
873 error("key_to_blob: key == NULL");
874 return 0;
875 }
876 buffer_init(&b);
877 switch (key->type) {
878 case KEY_DSA:
879 buffer_put_cstring(&b, key_ssh_name(key));
880 buffer_put_bignum2(&b, key->dsa->p);
881 buffer_put_bignum2(&b, key->dsa->q);
882 buffer_put_bignum2(&b, key->dsa->g);
883 buffer_put_bignum2(&b, key->dsa->pub_key);
884 break;
885 case KEY_RSA:
886 buffer_put_cstring(&b, key_ssh_name(key));
887 buffer_put_bignum2(&b, key->rsa->e);
888 buffer_put_bignum2(&b, key->rsa->n);
889 break;
890 default:
891 error("key_to_blob: unsupported key type %d", key->type);
892 buffer_free(&b);
893 return 0;
894 }
895 len = buffer_len(&b);
896 if (lenp != NULL)
897 *lenp = len;
898 if (blobp != NULL) {
899 *blobp = xmalloc(len);
900 memcpy(*blobp, buffer_ptr(&b), len);
901 }
902 memset(buffer_ptr(&b), 0, len);
903 buffer_free(&b);
904 return len;
905}
906
907int
908key_sign(
909 const Key *key,
910 u_char **sigp, u_int *lenp,
911 const u_char *data, u_int datalen)
912{
913 switch (key->type) {
914 case KEY_DSA:
915 return ssh_dss_sign(key, sigp, lenp, data, datalen);
916 case KEY_RSA:
917 return ssh_rsa_sign(key, sigp, lenp, data, datalen);
918 default:
919 error("key_sign: invalid key type %d", key->type);
920 return -1;
921 }
922}
923
924/*
925 * key_verify returns 1 for a correct signature, 0 for an incorrect signature
926 * and -1 on error.
927 */
928int
929key_verify(
930 const Key *key,
931 const u_char *signature, u_int signaturelen,
932 const u_char *data, u_int datalen)
933{
934 if (signaturelen == 0)
935 return -1;
936
937 switch (key->type) {
938 case KEY_DSA:
939 return ssh_dss_verify(key, signature, signaturelen, data, datalen);
940 case KEY_RSA:
941 return ssh_rsa_verify(key, signature, signaturelen, data, datalen);
942 default:
943 error("key_verify: invalid key type %d", key->type);
944 return -1;
945 }
946}
947
948/* Converts a private to a public key */
949Key *
950key_demote(const Key *k)
951{
952 Key *pk;
953
954 pk = xcalloc(1, sizeof(*pk));
955 pk->type = k->type;
956 pk->flags = k->flags;
957 pk->dsa = NULL;
958 pk->rsa = NULL;
959
960 switch (k->type) {
961 case KEY_RSA1:
962 case KEY_RSA:
963 if ((pk->rsa = RSA_new()) == NULL)
964 fatal("key_demote: RSA_new failed");
965 if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL)
966 fatal("key_demote: BN_dup failed");
967 if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL)
968 fatal("key_demote: BN_dup failed");
969 break;
970 case KEY_DSA:
971 if ((pk->dsa = DSA_new()) == NULL)
972 fatal("key_demote: DSA_new failed");
973 if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL)
974 fatal("key_demote: BN_dup failed");
975 if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL)
976 fatal("key_demote: BN_dup failed");
977 if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL)
978 fatal("key_demote: BN_dup failed");
979 if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL)
980 fatal("key_demote: BN_dup failed");
981 break;
982 default:
983 fatal("key_free: bad key type %d", k->type);
984 break;
985 }
986
987 return (pk);
988}
This page took 0.116096 seconds and 5 git commands to generate.