]> andersk Git - openssh.git/blame_incremental - key.c
- djm@cvs.openbsd.org 2006/03/20 04:09:44
[openssh.git] / key.c
... / ...
CommitLineData
1/*
2 * read_bignum():
3 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
4 *
5 * As far as I am concerned, the code I have written for this software
6 * can be used freely for any purpose. Any derived versions of this
7 * software must be clearly marked as such, and if the derived work is
8 * incompatible with the protocol description in the RFC file, it must be
9 * called by a name other than "ssh" or "Secure Shell".
10 *
11 *
12 * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34#include "includes.h"
35
36#include <openssl/evp.h>
37
38#include "xmalloc.h"
39#include "key.h"
40#include "rsa.h"
41#include "uuencode.h"
42#include "buffer.h"
43#include "bufaux.h"
44#include "log.h"
45
46Key *
47key_new(int type)
48{
49 Key *k;
50 RSA *rsa;
51 DSA *dsa;
52 k = xmalloc(sizeof(*k));
53 k->type = type;
54 k->flags = 0;
55 k->dsa = NULL;
56 k->rsa = NULL;
57 switch (k->type) {
58 case KEY_RSA1:
59 case KEY_RSA:
60 if ((rsa = RSA_new()) == NULL)
61 fatal("key_new: RSA_new failed");
62 if ((rsa->n = BN_new()) == NULL)
63 fatal("key_new: BN_new failed");
64 if ((rsa->e = BN_new()) == NULL)
65 fatal("key_new: BN_new failed");
66 k->rsa = rsa;
67 break;
68 case KEY_DSA:
69 if ((dsa = DSA_new()) == NULL)
70 fatal("key_new: DSA_new failed");
71 if ((dsa->p = BN_new()) == NULL)
72 fatal("key_new: BN_new failed");
73 if ((dsa->q = BN_new()) == NULL)
74 fatal("key_new: BN_new failed");
75 if ((dsa->g = BN_new()) == NULL)
76 fatal("key_new: BN_new failed");
77 if ((dsa->pub_key = BN_new()) == NULL)
78 fatal("key_new: BN_new failed");
79 k->dsa = dsa;
80 break;
81 case KEY_UNSPEC:
82 break;
83 default:
84 fatal("key_new: bad key type %d", k->type);
85 break;
86 }
87 return k;
88}
89
90Key *
91key_new_private(int type)
92{
93 Key *k = key_new(type);
94 switch (k->type) {
95 case KEY_RSA1:
96 case KEY_RSA:
97 if ((k->rsa->d = BN_new()) == NULL)
98 fatal("key_new_private: BN_new failed");
99 if ((k->rsa->iqmp = BN_new()) == NULL)
100 fatal("key_new_private: BN_new failed");
101 if ((k->rsa->q = BN_new()) == NULL)
102 fatal("key_new_private: BN_new failed");
103 if ((k->rsa->p = BN_new()) == NULL)
104 fatal("key_new_private: BN_new failed");
105 if ((k->rsa->dmq1 = BN_new()) == NULL)
106 fatal("key_new_private: BN_new failed");
107 if ((k->rsa->dmp1 = BN_new()) == NULL)
108 fatal("key_new_private: BN_new failed");
109 break;
110 case KEY_DSA:
111 if ((k->dsa->priv_key = BN_new()) == NULL)
112 fatal("key_new_private: BN_new failed");
113 break;
114 case KEY_UNSPEC:
115 break;
116 default:
117 break;
118 }
119 return k;
120}
121
122void
123key_free(Key *k)
124{
125 switch (k->type) {
126 case KEY_RSA1:
127 case KEY_RSA:
128 if (k->rsa != NULL)
129 RSA_free(k->rsa);
130 k->rsa = NULL;
131 break;
132 case KEY_DSA:
133 if (k->dsa != NULL)
134 DSA_free(k->dsa);
135 k->dsa = NULL;
136 break;
137 case KEY_UNSPEC:
138 break;
139 default:
140 fatal("key_free: bad key type %d", k->type);
141 break;
142 }
143 xfree(k);
144}
145
146int
147key_equal(const Key *a, const Key *b)
148{
149 if (a == NULL || b == NULL || a->type != b->type)
150 return 0;
151 switch (a->type) {
152 case KEY_RSA1:
153 case KEY_RSA:
154 return a->rsa != NULL && b->rsa != NULL &&
155 BN_cmp(a->rsa->e, b->rsa->e) == 0 &&
156 BN_cmp(a->rsa->n, b->rsa->n) == 0;
157 break;
158 case KEY_DSA:
159 return a->dsa != NULL && b->dsa != NULL &&
160 BN_cmp(a->dsa->p, b->dsa->p) == 0 &&
161 BN_cmp(a->dsa->q, b->dsa->q) == 0 &&
162 BN_cmp(a->dsa->g, b->dsa->g) == 0 &&
163 BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0;
164 break;
165 default:
166 fatal("key_equal: bad key type %d", a->type);
167 break;
168 }
169 return 0;
170}
171
172u_char*
173key_fingerprint_raw(const Key *k, enum fp_type dgst_type,
174 u_int *dgst_raw_length)
175{
176 const EVP_MD *md = NULL;
177 EVP_MD_CTX ctx;
178 u_char *blob = NULL;
179 u_char *retval = NULL;
180 u_int len = 0;
181 int nlen, elen;
182
183 *dgst_raw_length = 0;
184
185 switch (dgst_type) {
186 case SSH_FP_MD5:
187 md = EVP_md5();
188 break;
189 case SSH_FP_SHA1:
190 md = EVP_sha1();
191 break;
192 default:
193 fatal("key_fingerprint_raw: bad digest type %d",
194 dgst_type);
195 }
196 switch (k->type) {
197 case KEY_RSA1:
198 nlen = BN_num_bytes(k->rsa->n);
199 elen = BN_num_bytes(k->rsa->e);
200 len = nlen + elen;
201 blob = xmalloc(len);
202 BN_bn2bin(k->rsa->n, blob);
203 BN_bn2bin(k->rsa->e, blob + nlen);
204 break;
205 case KEY_DSA:
206 case KEY_RSA:
207 key_to_blob(k, &blob, &len);
208 break;
209 case KEY_UNSPEC:
210 return retval;
211 break;
212 default:
213 fatal("key_fingerprint_raw: bad key type %d", k->type);
214 break;
215 }
216 if (blob != NULL) {
217 retval = xmalloc(EVP_MAX_MD_SIZE);
218 EVP_DigestInit(&ctx, md);
219 EVP_DigestUpdate(&ctx, blob, len);
220 EVP_DigestFinal(&ctx, retval, dgst_raw_length);
221 memset(blob, 0, len);
222 xfree(blob);
223 } else {
224 fatal("key_fingerprint_raw: blob is null");
225 }
226 return retval;
227}
228
229static char *
230key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len)
231{
232 char *retval;
233 u_int i;
234
235 retval = xmalloc(dgst_raw_len * 3 + 1);
236 retval[0] = '\0';
237 for (i = 0; i < dgst_raw_len; i++) {
238 char hex[4];
239 snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]);
240 strlcat(retval, hex, dgst_raw_len * 3 + 1);
241 }
242
243 /* Remove the trailing ':' character */
244 retval[(dgst_raw_len * 3) - 1] = '\0';
245 return retval;
246}
247
248static char *
249key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len)
250{
251 char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
252 char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
253 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
254 u_int i, j = 0, rounds, seed = 1;
255 char *retval;
256
257 rounds = (dgst_raw_len / 2) + 1;
258 retval = xmalloc(sizeof(char) * (rounds*6));
259 retval[j++] = 'x';
260 for (i = 0; i < rounds; i++) {
261 u_int idx0, idx1, idx2, idx3, idx4;
262 if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) {
263 idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) +
264 seed) % 6;
265 idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15;
266 idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) +
267 (seed / 6)) % 6;
268 retval[j++] = vowels[idx0];
269 retval[j++] = consonants[idx1];
270 retval[j++] = vowels[idx2];
271 if ((i + 1) < rounds) {
272 idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15;
273 idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15;
274 retval[j++] = consonants[idx3];
275 retval[j++] = '-';
276 retval[j++] = consonants[idx4];
277 seed = ((seed * 5) +
278 ((((u_int)(dgst_raw[2 * i])) * 7) +
279 ((u_int)(dgst_raw[(2 * i) + 1])))) % 36;
280 }
281 } else {
282 idx0 = seed % 6;
283 idx1 = 16;
284 idx2 = seed / 6;
285 retval[j++] = vowels[idx0];
286 retval[j++] = consonants[idx1];
287 retval[j++] = vowels[idx2];
288 }
289 }
290 retval[j++] = 'x';
291 retval[j++] = '\0';
292 return retval;
293}
294
295char *
296key_fingerprint(const Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep)
297{
298 char *retval = NULL;
299 u_char *dgst_raw;
300 u_int dgst_raw_len;
301
302 dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len);
303 if (!dgst_raw)
304 fatal("key_fingerprint: null from key_fingerprint_raw()");
305 switch (dgst_rep) {
306 case SSH_FP_HEX:
307 retval = key_fingerprint_hex(dgst_raw, dgst_raw_len);
308 break;
309 case SSH_FP_BUBBLEBABBLE:
310 retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len);
311 break;
312 default:
313 fatal("key_fingerprint_ex: bad digest representation %d",
314 dgst_rep);
315 break;
316 }
317 memset(dgst_raw, 0, dgst_raw_len);
318 xfree(dgst_raw);
319 return retval;
320}
321
322/*
323 * Reads a multiple-precision integer in decimal from the buffer, and advances
324 * the pointer. The integer must already be initialized. This function is
325 * permitted to modify the buffer. This leaves *cpp to point just beyond the
326 * last processed (and maybe modified) character. Note that this may modify
327 * the buffer containing the number.
328 */
329static int
330read_bignum(char **cpp, BIGNUM * value)
331{
332 char *cp = *cpp;
333 int old;
334
335 /* Skip any leading whitespace. */
336 for (; *cp == ' ' || *cp == '\t'; cp++)
337 ;
338
339 /* Check that it begins with a decimal digit. */
340 if (*cp < '0' || *cp > '9')
341 return 0;
342
343 /* Save starting position. */
344 *cpp = cp;
345
346 /* Move forward until all decimal digits skipped. */
347 for (; *cp >= '0' && *cp <= '9'; cp++)
348 ;
349
350 /* Save the old terminating character, and replace it by \0. */
351 old = *cp;
352 *cp = 0;
353
354 /* Parse the number. */
355 if (BN_dec2bn(&value, *cpp) == 0)
356 return 0;
357
358 /* Restore old terminating character. */
359 *cp = old;
360
361 /* Move beyond the number and return success. */
362 *cpp = cp;
363 return 1;
364}
365
366static int
367write_bignum(FILE *f, BIGNUM *num)
368{
369 char *buf = BN_bn2dec(num);
370 if (buf == NULL) {
371 error("write_bignum: BN_bn2dec() failed");
372 return 0;
373 }
374 fprintf(f, " %s", buf);
375 OPENSSL_free(buf);
376 return 1;
377}
378
379/* returns 1 ok, -1 error */
380int
381key_read(Key *ret, char **cpp)
382{
383 Key *k;
384 int success = -1;
385 char *cp, *space;
386 int len, n, type;
387 u_int bits;
388 u_char *blob;
389
390 cp = *cpp;
391
392 switch (ret->type) {
393 case KEY_RSA1:
394 /* Get number of bits. */
395 if (*cp < '0' || *cp > '9')
396 return -1; /* Bad bit count... */
397 for (bits = 0; *cp >= '0' && *cp <= '9'; cp++)
398 bits = 10 * bits + *cp - '0';
399 if (bits == 0)
400 return -1;
401 *cpp = cp;
402 /* Get public exponent, public modulus. */
403 if (!read_bignum(cpp, ret->rsa->e))
404 return -1;
405 if (!read_bignum(cpp, ret->rsa->n))
406 return -1;
407 success = 1;
408 break;
409 case KEY_UNSPEC:
410 case KEY_RSA:
411 case KEY_DSA:
412 space = strchr(cp, ' ');
413 if (space == NULL) {
414 debug3("key_read: missing whitespace");
415 return -1;
416 }
417 *space = '\0';
418 type = key_type_from_name(cp);
419 *space = ' ';
420 if (type == KEY_UNSPEC) {
421 debug3("key_read: missing keytype");
422 return -1;
423 }
424 cp = space+1;
425 if (*cp == '\0') {
426 debug3("key_read: short string");
427 return -1;
428 }
429 if (ret->type == KEY_UNSPEC) {
430 ret->type = type;
431 } else if (ret->type != type) {
432 /* is a key, but different type */
433 debug3("key_read: type mismatch");
434 return -1;
435 }
436 len = 2*strlen(cp);
437 blob = xmalloc(len);
438 n = uudecode(cp, blob, len);
439 if (n < 0) {
440 error("key_read: uudecode %s failed", cp);
441 xfree(blob);
442 return -1;
443 }
444 k = key_from_blob(blob, (u_int)n);
445 xfree(blob);
446 if (k == NULL) {
447 error("key_read: key_from_blob %s failed", cp);
448 return -1;
449 }
450 if (k->type != type) {
451 error("key_read: type mismatch: encoding error");
452 key_free(k);
453 return -1;
454 }
455/*XXXX*/
456 if (ret->type == KEY_RSA) {
457 if (ret->rsa != NULL)
458 RSA_free(ret->rsa);
459 ret->rsa = k->rsa;
460 k->rsa = NULL;
461 success = 1;
462#ifdef DEBUG_PK
463 RSA_print_fp(stderr, ret->rsa, 8);
464#endif
465 } else {
466 if (ret->dsa != NULL)
467 DSA_free(ret->dsa);
468 ret->dsa = k->dsa;
469 k->dsa = NULL;
470 success = 1;
471#ifdef DEBUG_PK
472 DSA_print_fp(stderr, ret->dsa, 8);
473#endif
474 }
475/*XXXX*/
476 key_free(k);
477 if (success != 1)
478 break;
479 /* advance cp: skip whitespace and data */
480 while (*cp == ' ' || *cp == '\t')
481 cp++;
482 while (*cp != '\0' && *cp != ' ' && *cp != '\t')
483 cp++;
484 *cpp = cp;
485 break;
486 default:
487 fatal("key_read: bad key type: %d", ret->type);
488 break;
489 }
490 return success;
491}
492
493int
494key_write(const Key *key, FILE *f)
495{
496 int n, success = 0;
497 u_int len, bits = 0;
498 u_char *blob;
499 char *uu;
500
501 if (key->type == KEY_RSA1 && key->rsa != NULL) {
502 /* size of modulus 'n' */
503 bits = BN_num_bits(key->rsa->n);
504 fprintf(f, "%u", bits);
505 if (write_bignum(f, key->rsa->e) &&
506 write_bignum(f, key->rsa->n)) {
507 success = 1;
508 } else {
509 error("key_write: failed for RSA key");
510 }
511 } else if ((key->type == KEY_DSA && key->dsa != NULL) ||
512 (key->type == KEY_RSA && key->rsa != NULL)) {
513 key_to_blob(key, &blob, &len);
514 uu = xmalloc(2*len);
515 n = uuencode(blob, len, uu, 2*len);
516 if (n > 0) {
517 fprintf(f, "%s %s", key_ssh_name(key), uu);
518 success = 1;
519 }
520 xfree(blob);
521 xfree(uu);
522 }
523 return success;
524}
525
526const char *
527key_type(const Key *k)
528{
529 switch (k->type) {
530 case KEY_RSA1:
531 return "RSA1";
532 break;
533 case KEY_RSA:
534 return "RSA";
535 break;
536 case KEY_DSA:
537 return "DSA";
538 break;
539 }
540 return "unknown";
541}
542
543const char *
544key_ssh_name(const Key *k)
545{
546 switch (k->type) {
547 case KEY_RSA:
548 return "ssh-rsa";
549 break;
550 case KEY_DSA:
551 return "ssh-dss";
552 break;
553 }
554 return "ssh-unknown";
555}
556
557u_int
558key_size(const Key *k)
559{
560 switch (k->type) {
561 case KEY_RSA1:
562 case KEY_RSA:
563 return BN_num_bits(k->rsa->n);
564 break;
565 case KEY_DSA:
566 return BN_num_bits(k->dsa->p);
567 break;
568 }
569 return 0;
570}
571
572static RSA *
573rsa_generate_private_key(u_int bits)
574{
575 RSA *private;
576 private = RSA_generate_key(bits, 35, NULL, NULL);
577 if (private == NULL)
578 fatal("rsa_generate_private_key: key generation failed.");
579 return private;
580}
581
582static DSA*
583dsa_generate_private_key(u_int bits)
584{
585 DSA *private = DSA_generate_parameters(bits, NULL, 0, NULL, NULL, NULL, NULL);
586 if (private == NULL)
587 fatal("dsa_generate_private_key: DSA_generate_parameters failed");
588 if (!DSA_generate_key(private))
589 fatal("dsa_generate_private_key: DSA_generate_key failed.");
590 if (private == NULL)
591 fatal("dsa_generate_private_key: NULL.");
592 return private;
593}
594
595Key *
596key_generate(int type, u_int bits)
597{
598 Key *k = key_new(KEY_UNSPEC);
599 switch (type) {
600 case KEY_DSA:
601 k->dsa = dsa_generate_private_key(bits);
602 break;
603 case KEY_RSA:
604 case KEY_RSA1:
605 k->rsa = rsa_generate_private_key(bits);
606 break;
607 default:
608 fatal("key_generate: unknown type %d", type);
609 }
610 k->type = type;
611 return k;
612}
613
614Key *
615key_from_private(const Key *k)
616{
617 Key *n = NULL;
618 switch (k->type) {
619 case KEY_DSA:
620 n = key_new(k->type);
621 BN_copy(n->dsa->p, k->dsa->p);
622 BN_copy(n->dsa->q, k->dsa->q);
623 BN_copy(n->dsa->g, k->dsa->g);
624 BN_copy(n->dsa->pub_key, k->dsa->pub_key);
625 break;
626 case KEY_RSA:
627 case KEY_RSA1:
628 n = key_new(k->type);
629 BN_copy(n->rsa->n, k->rsa->n);
630 BN_copy(n->rsa->e, k->rsa->e);
631 break;
632 default:
633 fatal("key_from_private: unknown type %d", k->type);
634 break;
635 }
636 return n;
637}
638
639int
640key_type_from_name(char *name)
641{
642 if (strcmp(name, "rsa1") == 0) {
643 return KEY_RSA1;
644 } else if (strcmp(name, "rsa") == 0) {
645 return KEY_RSA;
646 } else if (strcmp(name, "dsa") == 0) {
647 return KEY_DSA;
648 } else if (strcmp(name, "ssh-rsa") == 0) {
649 return KEY_RSA;
650 } else if (strcmp(name, "ssh-dss") == 0) {
651 return KEY_DSA;
652 }
653 debug2("key_type_from_name: unknown key type '%s'", name);
654 return KEY_UNSPEC;
655}
656
657int
658key_names_valid2(const char *names)
659{
660 char *s, *cp, *p;
661
662 if (names == NULL || strcmp(names, "") == 0)
663 return 0;
664 s = cp = xstrdup(names);
665 for ((p = strsep(&cp, ",")); p && *p != '\0';
666 (p = strsep(&cp, ","))) {
667 switch (key_type_from_name(p)) {
668 case KEY_RSA1:
669 case KEY_UNSPEC:
670 xfree(s);
671 return 0;
672 }
673 }
674 debug3("key names ok: [%s]", names);
675 xfree(s);
676 return 1;
677}
678
679Key *
680key_from_blob(const u_char *blob, u_int blen)
681{
682 Buffer b;
683 int rlen, type;
684 char *ktype = NULL;
685 Key *key = NULL;
686
687#ifdef DEBUG_PK
688 dump_base64(stderr, blob, blen);
689#endif
690 buffer_init(&b);
691 buffer_append(&b, blob, blen);
692 if ((ktype = buffer_get_string_ret(&b, NULL)) == NULL) {
693 error("key_from_blob: can't read key type");
694 goto out;
695 }
696
697 type = key_type_from_name(ktype);
698
699 switch (type) {
700 case KEY_RSA:
701 key = key_new(type);
702 if (buffer_get_bignum2_ret(&b, key->rsa->e) == -1 ||
703 buffer_get_bignum2_ret(&b, key->rsa->n) == -1) {
704 error("key_from_blob: can't read rsa key");
705 key_free(key);
706 key = NULL;
707 goto out;
708 }
709#ifdef DEBUG_PK
710 RSA_print_fp(stderr, key->rsa, 8);
711#endif
712 break;
713 case KEY_DSA:
714 key = key_new(type);
715 if (buffer_get_bignum2_ret(&b, key->dsa->p) == -1 ||
716 buffer_get_bignum2_ret(&b, key->dsa->q) == -1 ||
717 buffer_get_bignum2_ret(&b, key->dsa->g) == -1 ||
718 buffer_get_bignum2_ret(&b, key->dsa->pub_key) == -1) {
719 error("key_from_blob: can't read dsa key");
720 key_free(key);
721 key = NULL;
722 goto out;
723 }
724#ifdef DEBUG_PK
725 DSA_print_fp(stderr, key->dsa, 8);
726#endif
727 break;
728 case KEY_UNSPEC:
729 key = key_new(type);
730 break;
731 default:
732 error("key_from_blob: cannot handle type %s", ktype);
733 goto out;
734 }
735 rlen = buffer_len(&b);
736 if (key != NULL && rlen != 0)
737 error("key_from_blob: remaining bytes in key blob %d", rlen);
738 out:
739 if (ktype != NULL)
740 xfree(ktype);
741 buffer_free(&b);
742 return key;
743}
744
745int
746key_to_blob(const Key *key, u_char **blobp, u_int *lenp)
747{
748 Buffer b;
749 int len;
750
751 if (key == NULL) {
752 error("key_to_blob: key == NULL");
753 return 0;
754 }
755 buffer_init(&b);
756 switch (key->type) {
757 case KEY_DSA:
758 buffer_put_cstring(&b, key_ssh_name(key));
759 buffer_put_bignum2(&b, key->dsa->p);
760 buffer_put_bignum2(&b, key->dsa->q);
761 buffer_put_bignum2(&b, key->dsa->g);
762 buffer_put_bignum2(&b, key->dsa->pub_key);
763 break;
764 case KEY_RSA:
765 buffer_put_cstring(&b, key_ssh_name(key));
766 buffer_put_bignum2(&b, key->rsa->e);
767 buffer_put_bignum2(&b, key->rsa->n);
768 break;
769 default:
770 error("key_to_blob: unsupported key type %d", key->type);
771 buffer_free(&b);
772 return 0;
773 }
774 len = buffer_len(&b);
775 if (lenp != NULL)
776 *lenp = len;
777 if (blobp != NULL) {
778 *blobp = xmalloc(len);
779 memcpy(*blobp, buffer_ptr(&b), len);
780 }
781 memset(buffer_ptr(&b), 0, len);
782 buffer_free(&b);
783 return len;
784}
785
786int
787key_sign(
788 const Key *key,
789 u_char **sigp, u_int *lenp,
790 const u_char *data, u_int datalen)
791{
792 switch (key->type) {
793 case KEY_DSA:
794 return ssh_dss_sign(key, sigp, lenp, data, datalen);
795 break;
796 case KEY_RSA:
797 return ssh_rsa_sign(key, sigp, lenp, data, datalen);
798 break;
799 default:
800 error("key_sign: invalid key type %d", key->type);
801 return -1;
802 break;
803 }
804}
805
806/*
807 * key_verify returns 1 for a correct signature, 0 for an incorrect signature
808 * and -1 on error.
809 */
810int
811key_verify(
812 const Key *key,
813 const u_char *signature, u_int signaturelen,
814 const u_char *data, u_int datalen)
815{
816 if (signaturelen == 0)
817 return -1;
818
819 switch (key->type) {
820 case KEY_DSA:
821 return ssh_dss_verify(key, signature, signaturelen, data, datalen);
822 break;
823 case KEY_RSA:
824 return ssh_rsa_verify(key, signature, signaturelen, data, datalen);
825 break;
826 default:
827 error("key_verify: invalid key type %d", key->type);
828 return -1;
829 break;
830 }
831}
832
833/* Converts a private to a public key */
834Key *
835key_demote(const Key *k)
836{
837 Key *pk;
838
839 pk = xmalloc(sizeof(*pk));
840 pk->type = k->type;
841 pk->flags = k->flags;
842 pk->dsa = NULL;
843 pk->rsa = NULL;
844
845 switch (k->type) {
846 case KEY_RSA1:
847 case KEY_RSA:
848 if ((pk->rsa = RSA_new()) == NULL)
849 fatal("key_demote: RSA_new failed");
850 if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL)
851 fatal("key_demote: BN_dup failed");
852 if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL)
853 fatal("key_demote: BN_dup failed");
854 break;
855 case KEY_DSA:
856 if ((pk->dsa = DSA_new()) == NULL)
857 fatal("key_demote: DSA_new failed");
858 if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL)
859 fatal("key_demote: BN_dup failed");
860 if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL)
861 fatal("key_demote: BN_dup failed");
862 if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL)
863 fatal("key_demote: BN_dup failed");
864 if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL)
865 fatal("key_demote: BN_dup failed");
866 break;
867 default:
868 fatal("key_free: bad key type %d", k->type);
869 break;
870 }
871
872 return (pk);
873}
This page took 0.042083 seconds and 5 git commands to generate.