]> andersk Git - openssh.git/blame - rijndael.c
20001209
[openssh.git] / rijndael.c
CommitLineData
dfe89252 1/*
2 * rijndael-alg-fst.c v2.4 April '2000
3 * rijndael-alg-api.c v2.4 April '2000
4 *
5 * Optimised ANSI C code
6 *
7 * authors: v1.0: Antoon Bosselaers
8 * v2.0: Vincent Rijmen, K.U.Leuven
9 * v2.3: Paulo Barreto
10 * v2.4: Vincent Rijmen, K.U.Leuven
11 *
12 * This code is placed in the public domain.
13 */
14
15#include <stdio.h>
16#include <stdlib.h>
17#include <assert.h>
94ec8c6b 18
6bcf7caa 19#include "config.h"
94ec8c6b 20#include "rijndael.h"
dfe89252 21#include "rijndael_boxes.h"
94ec8c6b 22
dfe89252 23int
24rijndael_keysched(u_int8_t k[RIJNDAEL_MAXKC][4],
25 u_int8_t W[RIJNDAEL_MAXROUNDS+1][4][4], int ROUNDS)
94ec8c6b 26{
dfe89252 27 /* Calculate the necessary round keys
28 * The number of calculations depends on keyBits and blockBits
29 */
30 int j, r, t, rconpointer = 0;
31 u_int8_t tk[RIJNDAEL_MAXKC][4];
32 int KC = ROUNDS - 6;
33
34 for (j = KC-1; j >= 0; j--) {
35 *((u_int32_t*)tk[j]) = *((u_int32_t*)k[j]);
94ec8c6b 36 }
dfe89252 37 r = 0;
38 t = 0;
39 /* copy values into round key array */
40 for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
41 for (; (j < KC) && (t < 4); j++, t++) {
42 *((u_int32_t*)W[r][t]) = *((u_int32_t*)tk[j]);
43 }
44 if (t == 4) {
45 r++;
46 t = 0;
94ec8c6b 47 }
48 }
dfe89252 49
50 while (r < ROUNDS + 1) { /* while not enough round key material calculated */
51 /* calculate new values */
52 tk[0][0] ^= S[tk[KC-1][1]];
53 tk[0][1] ^= S[tk[KC-1][2]];
54 tk[0][2] ^= S[tk[KC-1][3]];
55 tk[0][3] ^= S[tk[KC-1][0]];
56 tk[0][0] ^= rcon[rconpointer++];
57
58 if (KC != 8) {
59 for (j = 1; j < KC; j++) {
60 *((u_int32_t*)tk[j]) ^= *((u_int32_t*)tk[j-1]);
61 }
62 } else {
63 for (j = 1; j < KC/2; j++) {
64 *((u_int32_t*)tk[j]) ^= *((u_int32_t*)tk[j-1]);
65 }
66 tk[KC/2][0] ^= S[tk[KC/2 - 1][0]];
67 tk[KC/2][1] ^= S[tk[KC/2 - 1][1]];
68 tk[KC/2][2] ^= S[tk[KC/2 - 1][2]];
69 tk[KC/2][3] ^= S[tk[KC/2 - 1][3]];
70 for (j = KC/2 + 1; j < KC; j++) {
71 *((u_int32_t*)tk[j]) ^= *((u_int32_t*)tk[j-1]);
72 }
73 }
74 /* copy values into round key array */
75 for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
76 for (; (j < KC) && (t < 4); j++, t++) {
77 *((u_int32_t*)W[r][t]) = *((u_int32_t*)tk[j]);
78 }
79 if (t == 4) {
80 r++;
81 t = 0;
82 }
83 }
84 }
85 return 0;
9ea53ba5 86}
94ec8c6b 87
dfe89252 88int
89rijndael_key_enc_to_dec(u_int8_t W[RIJNDAEL_MAXROUNDS+1][4][4], int ROUNDS)
90{
91 int r;
92 u_int8_t *w;
93
94 for (r = 1; r < ROUNDS; r++) {
95 w = W[r][0];
96 *((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
97 ^ *((u_int32_t*)U2[w[1]])
98 ^ *((u_int32_t*)U3[w[2]])
99 ^ *((u_int32_t*)U4[w[3]]);
100
101 w = W[r][1];
102 *((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
103 ^ *((u_int32_t*)U2[w[1]])
104 ^ *((u_int32_t*)U3[w[2]])
105 ^ *((u_int32_t*)U4[w[3]]);
106
107 w = W[r][2];
108 *((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
109 ^ *((u_int32_t*)U2[w[1]])
110 ^ *((u_int32_t*)U3[w[2]])
111 ^ *((u_int32_t*)U4[w[3]]);
112
113 w = W[r][3];
114 *((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
115 ^ *((u_int32_t*)U2[w[1]])
116 ^ *((u_int32_t*)U3[w[2]])
117 ^ *((u_int32_t*)U4[w[3]]);
94ec8c6b 118 }
dfe89252 119 return 0;
120}
121
122/**
123 * Encrypt a single block.
124 */
125int
126rijndael_encrypt(rijndael_key *key, u_int8_t a[16], u_int8_t b[16])
127{
128 u_int8_t (*rk)[4][4] = key->keySched;
129 int ROUNDS = key->ROUNDS;
130 int r;
131 u_int8_t temp[4][4];
132
133 *((u_int32_t*)temp[0]) = *((u_int32_t*)(a )) ^ *((u_int32_t*)rk[0][0]);
134 *((u_int32_t*)temp[1]) = *((u_int32_t*)(a+ 4)) ^ *((u_int32_t*)rk[0][1]);
135 *((u_int32_t*)temp[2]) = *((u_int32_t*)(a+ 8)) ^ *((u_int32_t*)rk[0][2]);
136 *((u_int32_t*)temp[3]) = *((u_int32_t*)(a+12)) ^ *((u_int32_t*)rk[0][3]);
137 *((u_int32_t*)(b )) = *((u_int32_t*)T1[temp[0][0]])
138 ^ *((u_int32_t*)T2[temp[1][1]])
139 ^ *((u_int32_t*)T3[temp[2][2]])
140 ^ *((u_int32_t*)T4[temp[3][3]]);
141 *((u_int32_t*)(b + 4)) = *((u_int32_t*)T1[temp[1][0]])
142 ^ *((u_int32_t*)T2[temp[2][1]])
143 ^ *((u_int32_t*)T3[temp[3][2]])
144 ^ *((u_int32_t*)T4[temp[0][3]]);
145 *((u_int32_t*)(b + 8)) = *((u_int32_t*)T1[temp[2][0]])
146 ^ *((u_int32_t*)T2[temp[3][1]])
147 ^ *((u_int32_t*)T3[temp[0][2]])
148 ^ *((u_int32_t*)T4[temp[1][3]]);
149 *((u_int32_t*)(b +12)) = *((u_int32_t*)T1[temp[3][0]])
150 ^ *((u_int32_t*)T2[temp[0][1]])
151 ^ *((u_int32_t*)T3[temp[1][2]])
152 ^ *((u_int32_t*)T4[temp[2][3]]);
153 for (r = 1; r < ROUNDS-1; r++) {
154 *((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[r][0]);
155 *((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[r][1]);
156 *((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[r][2]);
157 *((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[r][3]);
158
159 *((u_int32_t*)(b )) = *((u_int32_t*)T1[temp[0][0]])
160 ^ *((u_int32_t*)T2[temp[1][1]])
161 ^ *((u_int32_t*)T3[temp[2][2]])
162 ^ *((u_int32_t*)T4[temp[3][3]]);
163 *((u_int32_t*)(b + 4)) = *((u_int32_t*)T1[temp[1][0]])
164 ^ *((u_int32_t*)T2[temp[2][1]])
165 ^ *((u_int32_t*)T3[temp[3][2]])
166 ^ *((u_int32_t*)T4[temp[0][3]]);
167 *((u_int32_t*)(b + 8)) = *((u_int32_t*)T1[temp[2][0]])
168 ^ *((u_int32_t*)T2[temp[3][1]])
169 ^ *((u_int32_t*)T3[temp[0][2]])
170 ^ *((u_int32_t*)T4[temp[1][3]]);
171 *((u_int32_t*)(b +12)) = *((u_int32_t*)T1[temp[3][0]])
172 ^ *((u_int32_t*)T2[temp[0][1]])
173 ^ *((u_int32_t*)T3[temp[1][2]])
174 ^ *((u_int32_t*)T4[temp[2][3]]);
94ec8c6b 175 }
dfe89252 176 /* last round is special */
177 *((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[ROUNDS-1][0]);
178 *((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[ROUNDS-1][1]);
179 *((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[ROUNDS-1][2]);
180 *((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[ROUNDS-1][3]);
181 b[ 0] = T1[temp[0][0]][1];
182 b[ 1] = T1[temp[1][1]][1];
183 b[ 2] = T1[temp[2][2]][1];
184 b[ 3] = T1[temp[3][3]][1];
185 b[ 4] = T1[temp[1][0]][1];
186 b[ 5] = T1[temp[2][1]][1];
187 b[ 6] = T1[temp[3][2]][1];
188 b[ 7] = T1[temp[0][3]][1];
189 b[ 8] = T1[temp[2][0]][1];
190 b[ 9] = T1[temp[3][1]][1];
191 b[10] = T1[temp[0][2]][1];
192 b[11] = T1[temp[1][3]][1];
193 b[12] = T1[temp[3][0]][1];
194 b[13] = T1[temp[0][1]][1];
195 b[14] = T1[temp[1][2]][1];
196 b[15] = T1[temp[2][3]][1];
197 *((u_int32_t*)(b )) ^= *((u_int32_t*)rk[ROUNDS][0]);
198 *((u_int32_t*)(b+ 4)) ^= *((u_int32_t*)rk[ROUNDS][1]);
199 *((u_int32_t*)(b+ 8)) ^= *((u_int32_t*)rk[ROUNDS][2]);
200 *((u_int32_t*)(b+12)) ^= *((u_int32_t*)rk[ROUNDS][3]);
201
202 return 0;
9ea53ba5 203}
94ec8c6b 204
dfe89252 205/**
206 * Decrypt a single block.
207 */
208int
209rijndael_decrypt(rijndael_key *key, u_int8_t a[16], u_int8_t b[16])
210{
211 u_int8_t (*rk)[4][4] = key->keySched;
212 int ROUNDS = key->ROUNDS;
213 int r;
214 u_int8_t temp[4][4];
215
216 *((u_int32_t*)temp[0]) = *((u_int32_t*)(a )) ^ *((u_int32_t*)rk[ROUNDS][0]);
217 *((u_int32_t*)temp[1]) = *((u_int32_t*)(a+ 4)) ^ *((u_int32_t*)rk[ROUNDS][1]);
218 *((u_int32_t*)temp[2]) = *((u_int32_t*)(a+ 8)) ^ *((u_int32_t*)rk[ROUNDS][2]);
219 *((u_int32_t*)temp[3]) = *((u_int32_t*)(a+12)) ^ *((u_int32_t*)rk[ROUNDS][3]);
220
221 *((u_int32_t*)(b )) = *((u_int32_t*)T5[temp[0][0]])
222 ^ *((u_int32_t*)T6[temp[3][1]])
223 ^ *((u_int32_t*)T7[temp[2][2]])
224 ^ *((u_int32_t*)T8[temp[1][3]]);
225 *((u_int32_t*)(b+ 4)) = *((u_int32_t*)T5[temp[1][0]])
226 ^ *((u_int32_t*)T6[temp[0][1]])
227 ^ *((u_int32_t*)T7[temp[3][2]])
228 ^ *((u_int32_t*)T8[temp[2][3]]);
229 *((u_int32_t*)(b+ 8)) = *((u_int32_t*)T5[temp[2][0]])
230 ^ *((u_int32_t*)T6[temp[1][1]])
231 ^ *((u_int32_t*)T7[temp[0][2]])
232 ^ *((u_int32_t*)T8[temp[3][3]]);
233 *((u_int32_t*)(b+12)) = *((u_int32_t*)T5[temp[3][0]])
234 ^ *((u_int32_t*)T6[temp[2][1]])
235 ^ *((u_int32_t*)T7[temp[1][2]])
236 ^ *((u_int32_t*)T8[temp[0][3]]);
237 for (r = ROUNDS-1; r > 1; r--) {
238 *((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[r][0]);
239 *((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[r][1]);
240 *((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[r][2]);
241 *((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[r][3]);
242 *((u_int32_t*)(b )) = *((u_int32_t*)T5[temp[0][0]])
243 ^ *((u_int32_t*)T6[temp[3][1]])
244 ^ *((u_int32_t*)T7[temp[2][2]])
245 ^ *((u_int32_t*)T8[temp[1][3]]);
246 *((u_int32_t*)(b+ 4)) = *((u_int32_t*)T5[temp[1][0]])
247 ^ *((u_int32_t*)T6[temp[0][1]])
248 ^ *((u_int32_t*)T7[temp[3][2]])
249 ^ *((u_int32_t*)T8[temp[2][3]]);
250 *((u_int32_t*)(b+ 8)) = *((u_int32_t*)T5[temp[2][0]])
251 ^ *((u_int32_t*)T6[temp[1][1]])
252 ^ *((u_int32_t*)T7[temp[0][2]])
253 ^ *((u_int32_t*)T8[temp[3][3]]);
254 *((u_int32_t*)(b+12)) = *((u_int32_t*)T5[temp[3][0]])
255 ^ *((u_int32_t*)T6[temp[2][1]])
256 ^ *((u_int32_t*)T7[temp[1][2]])
257 ^ *((u_int32_t*)T8[temp[0][3]]);
94ec8c6b 258 }
dfe89252 259 /* last round is special */
260 *((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[1][0]);
261 *((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[1][1]);
262 *((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[1][2]);
263 *((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[1][3]);
264 b[ 0] = S5[temp[0][0]];
265 b[ 1] = S5[temp[3][1]];
266 b[ 2] = S5[temp[2][2]];
267 b[ 3] = S5[temp[1][3]];
268 b[ 4] = S5[temp[1][0]];
269 b[ 5] = S5[temp[0][1]];
270 b[ 6] = S5[temp[3][2]];
271 b[ 7] = S5[temp[2][3]];
272 b[ 8] = S5[temp[2][0]];
273 b[ 9] = S5[temp[1][1]];
274 b[10] = S5[temp[0][2]];
275 b[11] = S5[temp[3][3]];
276 b[12] = S5[temp[3][0]];
277 b[13] = S5[temp[2][1]];
278 b[14] = S5[temp[1][2]];
279 b[15] = S5[temp[0][3]];
280 *((u_int32_t*)(b )) ^= *((u_int32_t*)rk[0][0]);
281 *((u_int32_t*)(b+ 4)) ^= *((u_int32_t*)rk[0][1]);
282 *((u_int32_t*)(b+ 8)) ^= *((u_int32_t*)rk[0][2]);
283 *((u_int32_t*)(b+12)) ^= *((u_int32_t*)rk[0][3]);
284
285 return 0;
286}
94ec8c6b 287
dfe89252 288int
289rijndael_makekey(rijndael_key *key, int direction, int keyLen, u_int8_t *keyMaterial)
290{
291 u_int8_t k[RIJNDAEL_MAXKC][4];
292 int i;
293
294 if (key == NULL)
295 return -1;
296 if ((direction != RIJNDAEL_ENCRYPT) && (direction != RIJNDAEL_DECRYPT))
297 return -1;
298 if ((keyLen != 128) && (keyLen != 192) && (keyLen != 256))
299 return -1;
300
301 key->ROUNDS = keyLen/32 + 6;
302
303 /* initialize key schedule: */
304 for (i = 0; i < keyLen/8; i++)
305 k[i >> 2][i & 3] = (u_int8_t)keyMaterial[i];
306
307 rijndael_keysched(k, key->keySched, key->ROUNDS);
308 if (direction == RIJNDAEL_DECRYPT)
309 rijndael_key_enc_to_dec(key->keySched, key->ROUNDS);
310 return 0;
9ea53ba5 311}
This page took 1.282118 seconds and 5 git commands to generate.