]> andersk Git - openssh.git/blame - openbsd-compat/sys-queue.h
- (djm) [configure.ac] Warn if the system has no known way of figuring out
[openssh.git] / openbsd-compat / sys-queue.h
CommitLineData
d74671e4 1/* OPENBSD ORIGINAL: sys/sys/queue.h */
2
22ca4f57 3/* $OpenBSD: queue.h,v 1.25 2004/04/08 16:08:21 henning Exp $ */
bf5f69f7 4/* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
5
6/*
7 * Copyright (c) 1991, 1993
8 * The Regents of the University of California. All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
3e67f7df 18 * 3. Neither the name of the University nor the names of its contributors
bf5f69f7 19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)queue.h 8.5 (Berkeley) 8/20/94
35 */
36
22ca4f57 37#ifndef _SYS_QUEUE_H_
38#define _SYS_QUEUE_H_
bf5f69f7 39
40/*
41 * This file defines five types of data structures: singly-linked lists,
42 * lists, simple queues, tail queues, and circular queues.
43 *
44 *
45 * A singly-linked list is headed by a single forward pointer. The elements
46 * are singly linked for minimum space and pointer manipulation overhead at
47 * the expense of O(n) removal for arbitrary elements. New elements can be
48 * added to the list after an existing element or at the head of the list.
49 * Elements being removed from the head of the list should use the explicit
50 * macro for this purpose for optimum efficiency. A singly-linked list may
51 * only be traversed in the forward direction. Singly-linked lists are ideal
52 * for applications with large datasets and few or no removals or for
53 * implementing a LIFO queue.
54 *
55 * A list is headed by a single forward pointer (or an array of forward
56 * pointers for a hash table header). The elements are doubly linked
57 * so that an arbitrary element can be removed without a need to
58 * traverse the list. New elements can be added to the list before
59 * or after an existing element or at the head of the list. A list
60 * may only be traversed in the forward direction.
61 *
62 * A simple queue is headed by a pair of pointers, one the head of the
63 * list and the other to the tail of the list. The elements are singly
64 * linked to save space, so elements can only be removed from the
65 * head of the list. New elements can be added to the list before or after
66 * an existing element, at the head of the list, or at the end of the
67 * list. A simple queue may only be traversed in the forward direction.
68 *
69 * A tail queue is headed by a pair of pointers, one to the head of the
70 * list and the other to the tail of the list. The elements are doubly
71 * linked so that an arbitrary element can be removed without a need to
72 * traverse the list. New elements can be added to the list before or
73 * after an existing element, at the head of the list, or at the end of
74 * the list. A tail queue may be traversed in either direction.
75 *
76 * A circle queue is headed by a pair of pointers, one to the head of the
77 * list and the other to the tail of the list. The elements are doubly
78 * linked so that an arbitrary element can be removed without a need to
79 * traverse the list. New elements can be added to the list before or after
80 * an existing element, at the head of the list, or at the end of the list.
81 * A circle queue may be traversed in either direction, but has a more
82 * complex end of list detection.
83 *
84 * For details on the use of these macros, see the queue(3) manual page.
85 */
86
87/*
88 * Singly-linked List definitions.
89 */
90#define SLIST_HEAD(name, type) \
91struct name { \
92 struct type *slh_first; /* first element */ \
93}
94
95#define SLIST_HEAD_INITIALIZER(head) \
96 { NULL }
97
98#define SLIST_ENTRY(type) \
99struct { \
100 struct type *sle_next; /* next element */ \
101}
102
103/*
104 * Singly-linked List access methods.
105 */
106#define SLIST_FIRST(head) ((head)->slh_first)
107#define SLIST_END(head) NULL
108#define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
109#define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
110
111#define SLIST_FOREACH(var, head, field) \
112 for((var) = SLIST_FIRST(head); \
113 (var) != SLIST_END(head); \
114 (var) = SLIST_NEXT(var, field))
115
22ca4f57 116#define SLIST_FOREACH_PREVPTR(var, varp, head, field) \
117 for ((varp) = &SLIST_FIRST((head)); \
118 ((var) = *(varp)) != SLIST_END(head); \
119 (varp) = &SLIST_NEXT((var), field))
120
bf5f69f7 121/*
122 * Singly-linked List functions.
123 */
124#define SLIST_INIT(head) { \
125 SLIST_FIRST(head) = SLIST_END(head); \
126}
127
128#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
129 (elm)->field.sle_next = (slistelm)->field.sle_next; \
130 (slistelm)->field.sle_next = (elm); \
131} while (0)
132
133#define SLIST_INSERT_HEAD(head, elm, field) do { \
134 (elm)->field.sle_next = (head)->slh_first; \
135 (head)->slh_first = (elm); \
136} while (0)
137
22ca4f57 138#define SLIST_REMOVE_NEXT(head, elm, field) do { \
139 (elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \
140} while (0)
141
bf5f69f7 142#define SLIST_REMOVE_HEAD(head, field) do { \
143 (head)->slh_first = (head)->slh_first->field.sle_next; \
144} while (0)
145
1656cbed 146#define SLIST_REMOVE(head, elm, type, field) do { \
147 if ((head)->slh_first == (elm)) { \
148 SLIST_REMOVE_HEAD((head), field); \
149 } \
150 else { \
151 struct type *curelm = (head)->slh_first; \
152 while( curelm->field.sle_next != (elm) ) \
153 curelm = curelm->field.sle_next; \
154 curelm->field.sle_next = \
155 curelm->field.sle_next->field.sle_next; \
156 } \
157} while (0)
158
bf5f69f7 159/*
160 * List definitions.
161 */
162#define LIST_HEAD(name, type) \
163struct name { \
164 struct type *lh_first; /* first element */ \
165}
166
167#define LIST_HEAD_INITIALIZER(head) \
168 { NULL }
169
170#define LIST_ENTRY(type) \
171struct { \
172 struct type *le_next; /* next element */ \
173 struct type **le_prev; /* address of previous next element */ \
174}
175
176/*
177 * List access methods
178 */
179#define LIST_FIRST(head) ((head)->lh_first)
180#define LIST_END(head) NULL
181#define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
182#define LIST_NEXT(elm, field) ((elm)->field.le_next)
183
184#define LIST_FOREACH(var, head, field) \
185 for((var) = LIST_FIRST(head); \
186 (var)!= LIST_END(head); \
187 (var) = LIST_NEXT(var, field))
188
189/*
190 * List functions.
191 */
192#define LIST_INIT(head) do { \
193 LIST_FIRST(head) = LIST_END(head); \
194} while (0)
195
196#define LIST_INSERT_AFTER(listelm, elm, field) do { \
197 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
198 (listelm)->field.le_next->field.le_prev = \
199 &(elm)->field.le_next; \
200 (listelm)->field.le_next = (elm); \
201 (elm)->field.le_prev = &(listelm)->field.le_next; \
202} while (0)
203
204#define LIST_INSERT_BEFORE(listelm, elm, field) do { \
205 (elm)->field.le_prev = (listelm)->field.le_prev; \
206 (elm)->field.le_next = (listelm); \
207 *(listelm)->field.le_prev = (elm); \
208 (listelm)->field.le_prev = &(elm)->field.le_next; \
209} while (0)
210
211#define LIST_INSERT_HEAD(head, elm, field) do { \
212 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
213 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
214 (head)->lh_first = (elm); \
215 (elm)->field.le_prev = &(head)->lh_first; \
216} while (0)
217
218#define LIST_REMOVE(elm, field) do { \
219 if ((elm)->field.le_next != NULL) \
220 (elm)->field.le_next->field.le_prev = \
221 (elm)->field.le_prev; \
222 *(elm)->field.le_prev = (elm)->field.le_next; \
223} while (0)
224
225#define LIST_REPLACE(elm, elm2, field) do { \
226 if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
227 (elm2)->field.le_next->field.le_prev = \
228 &(elm2)->field.le_next; \
229 (elm2)->field.le_prev = (elm)->field.le_prev; \
230 *(elm2)->field.le_prev = (elm2); \
231} while (0)
232
233/*
234 * Simple queue definitions.
235 */
236#define SIMPLEQ_HEAD(name, type) \
237struct name { \
238 struct type *sqh_first; /* first element */ \
239 struct type **sqh_last; /* addr of last next element */ \
240}
241
242#define SIMPLEQ_HEAD_INITIALIZER(head) \
243 { NULL, &(head).sqh_first }
244
245#define SIMPLEQ_ENTRY(type) \
246struct { \
247 struct type *sqe_next; /* next element */ \
248}
249
250/*
251 * Simple queue access methods.
252 */
253#define SIMPLEQ_FIRST(head) ((head)->sqh_first)
254#define SIMPLEQ_END(head) NULL
255#define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
256#define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
257
258#define SIMPLEQ_FOREACH(var, head, field) \
259 for((var) = SIMPLEQ_FIRST(head); \
260 (var) != SIMPLEQ_END(head); \
261 (var) = SIMPLEQ_NEXT(var, field))
262
263/*
264 * Simple queue functions.
265 */
266#define SIMPLEQ_INIT(head) do { \
267 (head)->sqh_first = NULL; \
268 (head)->sqh_last = &(head)->sqh_first; \
269} while (0)
270
271#define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
272 if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
273 (head)->sqh_last = &(elm)->field.sqe_next; \
274 (head)->sqh_first = (elm); \
275} while (0)
276
277#define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
278 (elm)->field.sqe_next = NULL; \
279 *(head)->sqh_last = (elm); \
280 (head)->sqh_last = &(elm)->field.sqe_next; \
281} while (0)
282
283#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
284 if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
285 (head)->sqh_last = &(elm)->field.sqe_next; \
286 (listelm)->field.sqe_next = (elm); \
287} while (0)
288
289#define SIMPLEQ_REMOVE_HEAD(head, elm, field) do { \
290 if (((head)->sqh_first = (elm)->field.sqe_next) == NULL) \
291 (head)->sqh_last = &(head)->sqh_first; \
292} while (0)
293
294/*
295 * Tail queue definitions.
296 */
297#define TAILQ_HEAD(name, type) \
298struct name { \
299 struct type *tqh_first; /* first element */ \
300 struct type **tqh_last; /* addr of last next element */ \
301}
302
303#define TAILQ_HEAD_INITIALIZER(head) \
304 { NULL, &(head).tqh_first }
305
306#define TAILQ_ENTRY(type) \
307struct { \
308 struct type *tqe_next; /* next element */ \
309 struct type **tqe_prev; /* address of previous next element */ \
310}
311
312/*
313 * tail queue access methods
314 */
315#define TAILQ_FIRST(head) ((head)->tqh_first)
316#define TAILQ_END(head) NULL
317#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
318#define TAILQ_LAST(head, headname) \
319 (*(((struct headname *)((head)->tqh_last))->tqh_last))
320/* XXX */
321#define TAILQ_PREV(elm, headname, field) \
322 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
323#define TAILQ_EMPTY(head) \
324 (TAILQ_FIRST(head) == TAILQ_END(head))
325
326#define TAILQ_FOREACH(var, head, field) \
327 for((var) = TAILQ_FIRST(head); \
328 (var) != TAILQ_END(head); \
329 (var) = TAILQ_NEXT(var, field))
330
22ca4f57 331#define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
bf5f69f7 332 for((var) = TAILQ_LAST(head, headname); \
333 (var) != TAILQ_END(head); \
334 (var) = TAILQ_PREV(var, headname, field))
335
336/*
337 * Tail queue functions.
338 */
339#define TAILQ_INIT(head) do { \
340 (head)->tqh_first = NULL; \
341 (head)->tqh_last = &(head)->tqh_first; \
342} while (0)
343
344#define TAILQ_INSERT_HEAD(head, elm, field) do { \
345 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
346 (head)->tqh_first->field.tqe_prev = \
347 &(elm)->field.tqe_next; \
348 else \
349 (head)->tqh_last = &(elm)->field.tqe_next; \
350 (head)->tqh_first = (elm); \
351 (elm)->field.tqe_prev = &(head)->tqh_first; \
352} while (0)
353
354#define TAILQ_INSERT_TAIL(head, elm, field) do { \
355 (elm)->field.tqe_next = NULL; \
356 (elm)->field.tqe_prev = (head)->tqh_last; \
357 *(head)->tqh_last = (elm); \
358 (head)->tqh_last = &(elm)->field.tqe_next; \
359} while (0)
360
361#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
362 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
363 (elm)->field.tqe_next->field.tqe_prev = \
364 &(elm)->field.tqe_next; \
365 else \
366 (head)->tqh_last = &(elm)->field.tqe_next; \
367 (listelm)->field.tqe_next = (elm); \
368 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
369} while (0)
370
371#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
372 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
373 (elm)->field.tqe_next = (listelm); \
374 *(listelm)->field.tqe_prev = (elm); \
375 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
376} while (0)
377
378#define TAILQ_REMOVE(head, elm, field) do { \
379 if (((elm)->field.tqe_next) != NULL) \
380 (elm)->field.tqe_next->field.tqe_prev = \
381 (elm)->field.tqe_prev; \
382 else \
383 (head)->tqh_last = (elm)->field.tqe_prev; \
384 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
385} while (0)
386
387#define TAILQ_REPLACE(head, elm, elm2, field) do { \
388 if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
389 (elm2)->field.tqe_next->field.tqe_prev = \
390 &(elm2)->field.tqe_next; \
391 else \
392 (head)->tqh_last = &(elm2)->field.tqe_next; \
393 (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
394 *(elm2)->field.tqe_prev = (elm2); \
395} while (0)
396
397/*
398 * Circular queue definitions.
399 */
400#define CIRCLEQ_HEAD(name, type) \
401struct name { \
402 struct type *cqh_first; /* first element */ \
403 struct type *cqh_last; /* last element */ \
404}
405
406#define CIRCLEQ_HEAD_INITIALIZER(head) \
407 { CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
408
409#define CIRCLEQ_ENTRY(type) \
410struct { \
411 struct type *cqe_next; /* next element */ \
412 struct type *cqe_prev; /* previous element */ \
413}
414
415/*
416 * Circular queue access methods
417 */
418#define CIRCLEQ_FIRST(head) ((head)->cqh_first)
419#define CIRCLEQ_LAST(head) ((head)->cqh_last)
420#define CIRCLEQ_END(head) ((void *)(head))
421#define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
422#define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
423#define CIRCLEQ_EMPTY(head) \
424 (CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
425
426#define CIRCLEQ_FOREACH(var, head, field) \
427 for((var) = CIRCLEQ_FIRST(head); \
428 (var) != CIRCLEQ_END(head); \
429 (var) = CIRCLEQ_NEXT(var, field))
430
431#define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
432 for((var) = CIRCLEQ_LAST(head); \
433 (var) != CIRCLEQ_END(head); \
434 (var) = CIRCLEQ_PREV(var, field))
435
436/*
437 * Circular queue functions.
438 */
439#define CIRCLEQ_INIT(head) do { \
440 (head)->cqh_first = CIRCLEQ_END(head); \
441 (head)->cqh_last = CIRCLEQ_END(head); \
442} while (0)
443
444#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
445 (elm)->field.cqe_next = (listelm)->field.cqe_next; \
446 (elm)->field.cqe_prev = (listelm); \
447 if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \
448 (head)->cqh_last = (elm); \
449 else \
450 (listelm)->field.cqe_next->field.cqe_prev = (elm); \
451 (listelm)->field.cqe_next = (elm); \
452} while (0)
453
454#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
455 (elm)->field.cqe_next = (listelm); \
456 (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
457 if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \
458 (head)->cqh_first = (elm); \
459 else \
460 (listelm)->field.cqe_prev->field.cqe_next = (elm); \
461 (listelm)->field.cqe_prev = (elm); \
462} while (0)
463
464#define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
465 (elm)->field.cqe_next = (head)->cqh_first; \
466 (elm)->field.cqe_prev = CIRCLEQ_END(head); \
467 if ((head)->cqh_last == CIRCLEQ_END(head)) \
468 (head)->cqh_last = (elm); \
469 else \
470 (head)->cqh_first->field.cqe_prev = (elm); \
471 (head)->cqh_first = (elm); \
472} while (0)
473
474#define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
475 (elm)->field.cqe_next = CIRCLEQ_END(head); \
476 (elm)->field.cqe_prev = (head)->cqh_last; \
477 if ((head)->cqh_first == CIRCLEQ_END(head)) \
478 (head)->cqh_first = (elm); \
479 else \
480 (head)->cqh_last->field.cqe_next = (elm); \
481 (head)->cqh_last = (elm); \
482} while (0)
483
484#define CIRCLEQ_REMOVE(head, elm, field) do { \
485 if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \
486 (head)->cqh_last = (elm)->field.cqe_prev; \
487 else \
488 (elm)->field.cqe_next->field.cqe_prev = \
489 (elm)->field.cqe_prev; \
490 if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \
491 (head)->cqh_first = (elm)->field.cqe_next; \
492 else \
493 (elm)->field.cqe_prev->field.cqe_next = \
494 (elm)->field.cqe_next; \
495} while (0)
496
497#define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
498 if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
499 CIRCLEQ_END(head)) \
500 (head).cqh_last = (elm2); \
501 else \
502 (elm2)->field.cqe_next->field.cqe_prev = (elm2); \
503 if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
504 CIRCLEQ_END(head)) \
505 (head).cqh_first = (elm2); \
506 else \
507 (elm2)->field.cqe_prev->field.cqe_next = (elm2); \
508} while (0)
509
22ca4f57 510#endif /* !_SYS_QUEUE_H_ */
This page took 0.459462 seconds and 5 git commands to generate.