/* R_KEYGEN.C - key-pair generation for RSAREF */ /* Copyright (C) RSA Laboratories, a division of RSA Data Security, Inc., created 1991. All rights reserved. */ #include "global.h" #include "rsaref.h" #include "r_random.h" #include "nn.h" #include "prime.h" static int RSAFilter PROTO_LIST ((NN_DIGIT *, unsigned int, NN_DIGIT *, unsigned int)); static int RelativelyPrime PROTO_LIST ((NN_DIGIT *, unsigned int, NN_DIGIT *, unsigned int)); /* Generates an RSA key pair with a given length and public exponent. */ int R_GeneratePEMKeys (publicKey, privateKey, protoKey, randomStruct) R_RSA_PUBLIC_KEY *publicKey; /* new RSA public key */ R_RSA_PRIVATE_KEY *privateKey; /* new RSA private key */ R_RSA_PROTO_KEY *protoKey; /* RSA prototype key */ R_RANDOM_STRUCT *randomStruct; /* random structure */ { NN_DIGIT d[MAX_NN_DIGITS], dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS], e[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], phiN[MAX_NN_DIGITS], pMinus1[MAX_NN_DIGITS], q[MAX_NN_DIGITS], qInv[MAX_NN_DIGITS], qMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS], u[MAX_NN_DIGITS], v[MAX_NN_DIGITS]; int status; unsigned int nDigits, pBits, pDigits, qBits; if ((protoKey->bits < MIN_RSA_MODULUS_BITS) || (protoKey->bits > MAX_RSA_MODULUS_BITS)) return (RE_MODULUS_LEN); nDigits = (protoKey->bits + NN_DIGIT_BITS - 1) / NN_DIGIT_BITS; pDigits = (nDigits + 1) / 2; pBits = (protoKey->bits + 1) / 2; qBits = protoKey->bits - pBits; /* NOTE: for 65537, this assumes NN_DIGIT is at least 17 bits. */ NN_ASSIGN_DIGIT (e, protoKey->useFermat4 ? (NN_DIGIT)65537 : (NN_DIGIT)3, nDigits); /* Generate prime p between 3*2^(pBits-2) and 2^pBits-1, searching in steps of 2, until one satisfies gcd (p-1, e) = 1. */ NN_Assign2Exp (t, pBits-1, pDigits); NN_Assign2Exp (u, pBits-2, pDigits); NN_Add (t, t, u, pDigits); NN_ASSIGN_DIGIT (v, 1, pDigits); NN_Sub (v, t, v, pDigits); NN_Add (u, u, v, pDigits); NN_ASSIGN_DIGIT (v, 2, pDigits); do { if (status = GeneratePrime (p, t, u, v, pDigits, randomStruct)) return (status); } while (! RSAFilter (p, pDigits, e, 1)); /* Generate prime q between 3*2^(qBits-2) and 2^qBits-1, searching in steps of 2, until one satisfies gcd (q-1, e) = 1. */ NN_Assign2Exp (t, qBits-1, pDigits); NN_Assign2Exp (u, qBits-2, pDigits); NN_Add (t, t, u, pDigits); NN_ASSIGN_DIGIT (v, 1, pDigits); NN_Sub (v, t, v, pDigits); NN_Add (u, u, v, pDigits); NN_ASSIGN_DIGIT (v, 2, pDigits); do { if (status = GeneratePrime (q, t, u, v, pDigits, randomStruct)) return (status); } while (! RSAFilter (q, pDigits, e, 1)); /* Sort so that p > q. (p = q case is extremely unlikely.) */ if (NN_Cmp (p, q, pDigits) < 0) { NN_Assign (t, p, pDigits); NN_Assign (p, q, pDigits); NN_Assign (q, t, pDigits); } /* Compute n = pq, qInv = q^{-1} mod p, d = e^{-1} mod (p-1)(q-1), dP = d mod p-1, dQ = d mod q-1. */ NN_Mult (n, p, q, pDigits); NN_ModInv (qInv, q, p, pDigits); NN_ASSIGN_DIGIT (t, 1, pDigits); NN_Sub (pMinus1, p, t, pDigits); NN_Sub (qMinus1, q, t, pDigits); NN_Mult (phiN, pMinus1, qMinus1, pDigits); NN_ModInv (d, e, phiN, nDigits); NN_Mod (dP, d, nDigits, pMinus1, pDigits); NN_Mod (dQ, d, nDigits, qMinus1, pDigits); publicKey->bits = privateKey->bits = protoKey->bits; NN_Encode (publicKey->modulus, MAX_RSA_MODULUS_LEN, n, nDigits); NN_Encode (publicKey->exponent, MAX_RSA_MODULUS_LEN, e, 1); R_memcpy ((POINTER)privateKey->modulus, (POINTER)publicKey->modulus, MAX_RSA_MODULUS_LEN); R_memcpy ((POINTER)privateKey->publicExponent, (POINTER)publicKey->exponent, MAX_RSA_MODULUS_LEN); NN_Encode (privateKey->exponent, MAX_RSA_MODULUS_LEN, d, nDigits); NN_Encode (privateKey->prime[0], MAX_RSA_PRIME_LEN, p, pDigits); NN_Encode (privateKey->prime[1], MAX_RSA_PRIME_LEN, q, pDigits); NN_Encode (privateKey->primeExponent[0], MAX_RSA_PRIME_LEN, dP, pDigits); NN_Encode (privateKey->primeExponent[1], MAX_RSA_PRIME_LEN, dQ, pDigits); NN_Encode (privateKey->coefficient, MAX_RSA_PRIME_LEN, qInv, pDigits); /* Zeroize sensitive information. */ R_memset ((POINTER)d, 0, sizeof (d)); R_memset ((POINTER)dP, 0, sizeof (dP)); R_memset ((POINTER)dQ, 0, sizeof (dQ)); R_memset ((POINTER)p, 0, sizeof (p)); R_memset ((POINTER)phiN, 0, sizeof (phiN)); R_memset ((POINTER)pMinus1, 0, sizeof (pMinus1)); R_memset ((POINTER)q, 0, sizeof (q)); R_memset ((POINTER)qInv, 0, sizeof (qInv)); R_memset ((POINTER)qMinus1, 0, sizeof (qMinus1)); R_memset ((POINTER)t, 0, sizeof (t)); return (0); } /* Returns nonzero iff GCD (a-1, b) = 1. Lengths: a[aDigits], b[bDigits]. Assumes aDigits < MAX_NN_DIGITS, bDigits < MAX_NN_DIGITS. */ static int RSAFilter (a, aDigits, b, bDigits) NN_DIGIT *a, *b; unsigned int aDigits, bDigits; { int status; NN_DIGIT aMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS]; NN_ASSIGN_DIGIT (t, 1, aDigits); NN_Sub (aMinus1, a, t, aDigits); status = RelativelyPrime (aMinus1, aDigits, b, bDigits); /* Zeroize sensitive information. */ R_memset ((POINTER)aMinus1, 0, sizeof (aMinus1)); return (status); } /* Returns nonzero iff a and b are relatively prime. Lengths: a[aDigits], b[bDigits]. Assumes aDigits >= bDigits, aDigits < MAX_NN_DIGITS. */ static int RelativelyPrime (a, aDigits, b, bDigits) NN_DIGIT *a, *b; unsigned int aDigits, bDigits; { int status; NN_DIGIT t[MAX_NN_DIGITS], u[MAX_NN_DIGITS]; NN_AssignZero (t, aDigits); NN_Assign (t, b, bDigits); NN_Gcd (t, a, t, aDigits); NN_ASSIGN_DIGIT (u, 1, aDigits); status = NN_EQUAL (t, u, aDigits); /* Zeroize sensitive information. */ R_memset ((POINTER)t, 0, sizeof (t)); return (status); }