]> andersk Git - moira.git/blame_incremental - server/qsupport.qc
added fsgroup support to delete_filesystem stuff
[moira.git] / server / qsupport.qc
... / ...
CommitLineData
1/*
2 * $Source$
3 * $Author$
4 * $Header$
5 *
6 * Copyright (C) 1987 by the Massachusetts Institute of Technology
7 * For copying and distribution information, please see the file
8 * <mit-copyright.h>.
9 *
10 */
11
12#ifndef lint
13static char *rcsid_qsupport_qc = "$Header$";
14#endif lint
15
16#include <mit-copyright.h>
17#include "query.h"
18#include "sms_server.h"
19#include <ctype.h>
20
21
22extern char *whoami, *strsave();
23
24
25/* Specialized Access Routines */
26
27/* access_user - verify that client name equals specified login name
28 *
29 * - since field validation routines are called first, a users_id is
30 * now in argv[0] instead of the login name.
31 */
32
33access_user(q, argv, cl)
34 struct query *q;
35 char *argv[];
36 client *cl;
37{
38 if (cl->users_id != *(int *)argv[0])
39 return(SMS_PERM);
40 else
41 return(SMS_SUCCESS);
42}
43
44
45
46/* access_login - verify that client name equals specified login name
47 *
48 * argv[0...n] contain search info. q->
49 */
50
51access_login(q, argv, cl)
52 struct query *q;
53 char *argv[];
54 client *cl;
55##{
56## int rowcount, id;
57## char qual[256];
58
59 build_qual(q->qual, q->argc, argv, qual);
60## retrieve (id = u.users_id) where qual
61## inquire_equel(rowcount = "rowcount")
62 if (rowcount != 1 || id != cl->users_id)
63 return(SMS_PERM);
64 else
65 return(SMS_SUCCESS);
66##}
67
68
69
70/* access_list - check access for most list operations
71 *
72 * Inputs: argv[0] - list_id
73 * q - query name
74 * argv[2] - member ID (only for queries "amtl" and "dmfl")
75 * argv[7] - group IID (only for query "ulis")
76 * cl - client name
77 *
78 * - check that client is a member of the access control list
79 * - OR, if the query is add_member_to_list or delete_member_from_list
80 * and the list is public, allow access if client = member
81 */
82
83access_list(q, argv, cl)
84 struct query *q;
85 char *argv[];
86 client *cl;
87##{
88## int list_id, acl_id, flags, rowcount, gid;
89## char acl_type[9];
90 char *client_type;
91 int client_id, status;
92
93 list_id = *(int *)argv[0];
94## repeat retrieve (acl_id = list.#acl_id, acl_type = list.#acl_type,
95## gid = list.#gid, flags = list.#public)
96## where list.#list_id = @list_id
97## inquire_equel(rowcount = "rowcount")
98 if (rowcount != 1)
99 return(SMS_INTERNAL);
100
101 /* parse client structure */
102 if ((status = get_client(cl, &client_type, &client_id)) != SMS_SUCCESS)
103 return(status);
104
105 /* if amtl or dmfl and list is public allow client to add or delete self */
106 if ((!strcmp("amtl", q->shortname) || !strcmp("dmfl", q->shortname)) &&
107 (flags && !strcmp("USER", argv[1]))) {
108 if (*(int *)argv[2] == client_id) return(SMS_SUCCESS);
109 /* if update_list, don't allow them to change the GID */
110 } else if (!strcmp("ulis", q->shortname)) {
111 if ((!strcmp(argv[7], UNIQUE_GID) && (gid != -1)) ||
112 (strcmp(argv[7], UNIQUE_GID) && (gid != atoi(argv[7]))))
113 return(SMS_PERM);
114 }
115
116 /* check for client in access control list */
117 status = find_member(acl_type, acl_id, client_type, client_id, 0);
118 if (!status) return(SMS_PERM);
119
120 return(SMS_SUCCESS);
121##}
122
123
124/* access_visible_list - allow access to list only if it is not hidden,
125 * or if the client is on the ACL
126 *
127 * Inputs: argv[0] - list_id
128 * cl - client identifier
129 */
130
131access_visible_list(q, argv, cl)
132 struct query *q;
133 char *argv[];
134 client *cl;
135##{
136## int list_id, acl_id, flags, rowcount;
137## char acl_type[9];
138 char *client_type;
139 int client_id, status;
140
141 list_id = *(int *)argv[0];
142## repeat retrieve (flags = list.hidden, acl_id = list.#acl_id,
143## acl_type = list.#acl_type) where list.#list_id = @list_id
144## inquire_equel(rowcount = "rowcount")
145 if (rowcount != 1)
146 return(SMS_INTERNAL);
147 if (!flags)
148 return(SMS_SUCCESS);
149
150 /* parse client structure */
151 if ((status = get_client(cl, &client_type, &client_id)) != SMS_SUCCESS)
152 return(status);
153
154 /* check for client in access control list */
155 status = find_member(acl_type, acl_id, client_type, client_id, 0);
156 if (!status)
157 return(SMS_PERM);
158
159 return(SMS_SUCCESS);
160##}
161
162
163/* access_vis_list_by_name - allow access to list only if it is not hidden,
164 * or if the client is on the ACL
165 *
166 * Inputs: argv[0] - list name
167 * cl - client identifier
168 */
169
170access_vis_list_by_name(q, argv, cl)
171 struct query *q;
172 char *argv[];
173 client *cl;
174##{
175## int acl_id, flags, rowcount;
176## char acl_type[9], *listname;
177 char *client_type;
178 int client_id, status;
179
180 listname = argv[0];
181## repeat retrieve (flags = list.hidden, acl_id = list.#acl_id,
182## acl_type = list.#acl_type) where list.#name = @listname
183## inquire_equel(rowcount = "rowcount");
184 if (rowcount > 1)
185 return(SMS_WILDCARD);
186 if (rowcount == 0)
187 return(SMS_NO_MATCH);
188 if (!flags)
189 return(SMS_SUCCESS);
190
191 /* parse client structure */
192 if ((status = get_client(cl, &client_type, &client_id)) != SMS_SUCCESS)
193 return(status);
194
195 /* check for client in access control list */
196 status = find_member(acl_type, acl_id, client_type, client_id, 0);
197 if (!status)
198 return(SMS_PERM);
199
200 return(SMS_SUCCESS);
201##}
202
203
204/* access_member - allow user to access member of type "USER" and name matches
205 * username, or to access member of type "LIST" and list is one that user is
206 * on the acl of, or the list is visible.
207 */
208
209access_member(q, argv, cl)
210 struct query *q;
211 char *argv[];
212 client *cl;
213{
214 if (!strcmp(argv[0], "LIST") || !strcmp(argv[0], "RLIST"))
215 return(access_visible_list(q, &argv[1], cl));
216
217 if (!strcmp(argv[0], "USER") || !strcmp(argv[0], "RUSER")) {
218 if (cl->users_id == *(int *)argv[1])
219 return(SMS_SUCCESS);
220 }
221
222 return(SMS_PERM);
223}
224
225
226/* access_qgli - special access routine for Qualified_get_lists. Allows
227 * access iff argv[0] == "TRUE" and argv[2] == "FALSE".
228 */
229
230access_qgli(q, argv, cl)
231 struct query *q;
232 char *argv[];
233 client *cl;
234{
235 if (!strcmp(argv[0], "TRUE") && !strcmp(argv[2], "FALSE"))
236 return(SMS_SUCCESS);
237 return(SMS_PERM);
238}
239
240
241/* access_service - allow access if user is on ACL of service. Don't
242 * allow access if a wildcard is used.
243 */
244
245access_service(q, argv, cl)
246 struct query *q;
247 char *argv[];
248 client *cl;
249##{
250## int acl_id, rowcount;
251## char *name, acl_type[9];
252 int client_id, status;
253 char *client_type;
254
255 name = argv[0];
256## repeat retrieve (acl_id = servers.#acl_id, acl_type = servers.#acl_type)
257## where servers.#name = uppercase(@name)
258## inquire_equel(rowcount = "rowcount")
259 if (rowcount > 1)
260 return(SMS_PERM);
261
262 /* parse client structure */
263 if ((status = get_client(cl, &client_type, &client_id)) != SMS_SUCCESS)
264 return(status);
265
266 /* check for client in access control list */
267 status = find_member(acl_type, acl_id, client_type, client_id, 0);
268 if (!status) return(SMS_PERM);
269
270 return(SMS_SUCCESS);
271##}
272
273
274
275/* access_filesys - verify that client is owner or on owners list of filesystem
276 * named by argv[0]
277 */
278
279access_filesys(q, argv, cl)
280 struct query *q;
281 char *argv[];
282 client *cl;
283##{
284## int rowcount, users_id, list_id;
285## char *name;
286 int status, client_id;
287 char *client_type;
288
289 name = argv[0];
290## repeat retrieve (users_id = filesys.owner, list_id = filesys.owners)
291## where filesys.label = @name
292## inquire_equel(rowcount = "rowcount")
293
294 if (rowcount != 1)
295 return(SMS_PERM);
296 if (users_id == cl->users_id)
297 return(SMS_SUCCESS);
298 if ((status = get_client(cl, &client_type, &client_id)) != SMS_SUCCESS)
299 return(status);
300 status = find_member("LIST", list_id, client_type, client_id, 0);
301 if (status)
302 return(SMS_SUCCESS);
303 return(SMS_PERM);
304##}
305
306
307\f
308/* Setup Routines */
309
310/* Setup routine for add_user
311 *
312 * Inputs: argv[0] - login
313 * argv[1] - uid
314 *
315 * Description:
316 *
317 * - if argv[1] == UNIQUE_UID then set argv[1] = next(uid)
318 * - if argv[0] == UNIQUE_LOGIN then set argv[0] = "#<uid>"
319 */
320
321setup_ausr(q, argv, cl)
322 struct query *q;
323 register char *argv[];
324 client *cl;
325##{
326## int nuid, rowcount;
327
328 if (!strcmp(argv[1], UNIQUE_UID) || atoi(argv[1]) == -1) {
329 if (set_next_object_id("uid", "users"))
330 return(SMS_INGRES_ERR);
331## repeat retrieve (nuid = values.value) where values.name = "uid"
332## inquire_equel(rowcount = "rowcount")
333 if (rowcount != 1)
334 return(SMS_INTERNAL);
335 sprintf(argv[1], "%d", nuid);
336 }
337
338 if (!strcmp(argv[0], UNIQUE_LOGIN) || atoi(argv[1]) == -1) {
339 sprintf(argv[0], "#%s", argv[1]);
340 }
341
342 return(SMS_SUCCESS);
343##}
344
345
346/* setup_dusr - verify that the user is no longer being referenced
347 * and may safely be deleted.
348 */
349
350int setup_dusr(q, argv)
351 struct query *q;
352 char **argv;
353##{
354## int flag, id;
355
356 id = *(int *)argv[0];
357
358 /* For now, only allow users to be deleted if their status is 0 */
359## repeat retrieve (flag = u.status) where u.users_id = @id
360 if (flag != 0)
361 return(SMS_IN_USE);
362
363## repeat delete nfsquota where nfsquota.users_id = @id
364## repeat retrieve (flag = any(members.member_id where members.member_id=@id
365## and members.member_type = "USER"))
366 if (flag)
367 return(SMS_IN_USE);
368## repeat retrieve (flag = any(filesys.label where filesys.owner=@id))
369 if (flag)
370 return(SMS_IN_USE);
371## repeat retrieve (flag = any(list.name where list.acl_id=@id and
372## list.acl_type = "USER"))
373 if (flag)
374 return(SMS_IN_USE);
375## repeat retrieve (flag = any(servers.name where servers.acl_id=@id and
376## servers.acl_type = "USER"))
377 if (flag)
378 return(SMS_IN_USE);
379## repeat retrieve (flag=any(hostaccess.acl_id where hostaccess.acl_id=@id and
380## hostaccess.acl_type = "USER"))
381 if (flag)
382 return(SMS_IN_USE);
383 else
384 return(SMS_SUCCESS);
385##}
386
387
388/* setup_spop: verify that there is already a valid POP machine_id in the
389 * pop_id field. Also take care of keeping track of the post office usage.
390 */
391int setup_spop(q, argv)
392struct query *q;
393char **argv;
394##{
395## int id, mid, flag;
396## char type[9];
397
398 id = *(int *)argv[0];
399## repeat retrieve (type = u.potype, mid = u.pop_id,
400## flag = any(machine.name where machine.mach_id = u.pop_id
401## and u.pop_id != 0 and u.users_id = @id))
402## where u.users_id = @id
403 if (!flag)
404 return(SMS_MACHINE);
405 if (strcmp(strtrim(type), "POP"))
406 set_pop_usage(mid, 1);
407 return(SMS_SUCCESS);
408##}
409
410
411/* setup_dpob: Take care of keeping track of the post office usage.
412 */
413int setup_dpob(q, argv)
414struct query *q;
415char **argv;
416##{
417## int id, user;
418## char type[9];
419
420 user = *(int *)argv[0];
421## repeat retrieve (type = u.potype, id = u.pop_id)
422## where u.users_id = @user
423
424 if (!strcmp(strtrim(type), "POP"))
425 set_pop_usage(id, -1);
426 return(SMS_SUCCESS);
427##}
428
429
430/* setup_dmac - verify that the machine is no longer being referenced
431 * and may safely be deleted.
432 */
433
434int setup_dmac(q, argv)
435 struct query *q;
436 char **argv;
437##{
438## int flag, id;
439
440 id = *(int *)argv[0];
441## repeat retrieve (flag = any(users.login where users.potype = "POP"
442## and users.pop_id=@id))
443 if (flag)
444 return(SMS_IN_USE);
445## repeat retrieve (flag = any(serverhosts.mach_id
446## where serverhosts.mach_id=@id))
447 if (flag)
448 return(SMS_IN_USE);
449## repeat retrieve (flag = any(nfsphys.mach_id where nfsphys.mach_id=@id))
450 if (flag)
451 return(SMS_IN_USE);
452## repeat retrieve (flag = any(hostaccess.mach_id where hostaccess.mach_id=@id))
453 if (flag)
454 return(SMS_IN_USE);
455## repeat retrieve (flag = any(printcap.mach_id where printcap.mach_id=@id))
456 if (flag)
457 return(SMS_IN_USE);
458
459## repeat delete mcmap where mcmap.mach_id = @id
460 return(SMS_SUCCESS);
461##}
462
463
464/* setup_dclu - verify that the cluster is no longer being referenced
465 * and may safely be deleted.
466 */
467
468int setup_dclu(q, argv)
469 struct query *q;
470 char **argv;
471##{
472## int flag, id;
473
474 id = *(int *)argv[0];
475## repeat retrieve (flag = any(mcmap.mach_id where mcmap.clu_id=@id))
476 if (flag)
477 return(SMS_IN_USE);
478## repeat retrieve (flag = any(svc.clu_id where svc.clu_id=@id))
479 if (flag)
480 return(SMS_IN_USE);
481 else
482 return(SMS_SUCCESS);
483##}
484
485
486/* setup_alis - if argv[5] is non-zero and argv[6] is UNIQUE_ID, then allocate
487 * a new gid and put it in argv[6]. Otherwise if argv[6] is UNIQUE_ID but
488 * argv[5] is not, then remember that UNIQUE_ID is being stored by putting
489 * a -1 there. Remember that this is also used for ulis, with the indexes
490 * at 6 & 7.
491 */
492
493int setup_alis(q, argv)
494struct query *q;
495char **argv;
496##{
497## int ngid;
498 char *malloc();
499 int idx;
500
501 if (!strcmp(q->shortname, "alis"))
502 idx = 6;
503 else if (!strcmp(q->shortname, "ulis"))
504 idx = 7;
505
506 if (!strcmp(argv[idx], UNIQUE_GID) || atoi(argv[idx]) == -1) {
507 if (atoi(argv[idx - 1])) {
508 if (set_next_object_id("gid", "list"))
509 return(SMS_INGRES_ERR);
510## repeat retrieve (ngid = values.value) where values.name = "gid"
511 sprintf(argv[idx], "%d", ngid);
512 } else {
513 strcpy(argv[idx], "-1");
514 }
515 }
516
517 return(SMS_SUCCESS);
518##}
519
520
521/* setup_dlist - verify that the list is no longer being referenced
522 * and may safely be deleted.
523 */
524
525int setup_dlis(q, argv)
526 struct query *q;
527 char **argv;
528##{
529## int flag, id;
530
531 id = *(int *)argv[0];
532## repeat retrieve (flag = any(members.member_id where members.member_id=@id
533## and members.member_type = "LIST"))
534 if (flag)
535 return(SMS_IN_USE);
536## repeat retrieve (flag = any(members.member_id where members.list_id=@id))
537 if (flag)
538 return(SMS_IN_USE);
539## repeat retrieve (flag = any(filesys.label where filesys.owners=@id))
540 if (flag)
541 return(SMS_IN_USE);
542## repeat retrieve (flag = any(capacls.tag where capacls.list_id=@id))
543 if (flag)
544 return(SMS_IN_USE);
545## repeat retrieve (flag = any(list.name where list.acl_id=@id and
546## list.acl_type = "LIST" and list.list_id != @id))
547 if (flag)
548 return(SMS_IN_USE);
549## repeat retrieve (flag = any(servers.name where servers.acl_id=@id and
550## servers.acl_type = "LIST"))
551 if (flag)
552 return(SMS_IN_USE);
553## repeat retrieve (flag=any(hostaccess.acl_id where hostaccess.acl_id=@id and
554## hostaccess.acl_type = "LIST"))
555 if (flag)
556 return(SMS_IN_USE);
557## repeat retrieve (flag = any(zephyr.class
558## where zephyr.xmt_type = "LIST" and zephyr.xmt_id = @id or
559## zephyr.sub_type = "LIST" and zephyr.sub_id = @id or
560## zephyr.iws_type = "LIST" and zephyr.iws_id = @id or
561## zephyr.iui_type = "LIST" and zephyr.iui_id = @id))
562 if (flag)
563 return(SMS_IN_USE);
564 else
565 return(SMS_SUCCESS);
566##}
567
568
569/* setup_dsin - verify that the service is no longer being referenced
570 * and may safely be deleted.
571 */
572
573int setup_dsin(q, argv)
574 struct query *q;
575 char **argv;
576##{
577## int flag;
578## char *name;
579
580 name = argv[0];
581## repeat retrieve (flag = any(serverhosts.service
582## where serverhosts.service=uppercase(@name)))
583 if (flag)
584 return(SMS_IN_USE);
585## repeat retrieve (flag = servers.inprogress) where servers.#name = @name
586 if (flag)
587 return(SMS_IN_USE);
588 else
589 return(SMS_SUCCESS);
590##}
591
592
593/* setup_dshi - verify that the service-host is no longer being referenced
594 * and may safely be deleted.
595 */
596
597int setup_dshi(q, argv)
598 struct query *q;
599 char **argv;
600##{
601## int flag, id;
602## char *name;
603
604 name = argv[0];
605 id = *(int *)argv[1];
606## repeat retrieve (flag=serverhosts.inprogress)
607## where serverhosts.service=uppercase(@name) and serverhosts.mach_id=@id
608 if (flag)
609 return(SMS_IN_USE);
610 else
611 return(SMS_SUCCESS);
612##}
613
614
615/**
616 ** setup_add_filesys - verify existance of referenced file systems
617 **
618 ** Inputs: Add
619 ** argv[1] - type
620 ** argv[2] - mach_id
621 ** argv[3] - name
622 ** argv[5] - access
623 **
624 ** Description:
625 ** - for type = RVD:
626 ** * allow anything
627 ** - for type = NFS:
628 ** * extract directory prefix from name
629 ** * verify mach_id/dir in nfsphys
630 ** * verify access in {r, w, R, W}
631 **
632 ** Side effect: sets variable var_phys_id to the ID of the physical
633 ** filesystem (nfsphys_id for NFS, 0 for RVD)
634 **
635 ** Errors:
636 ** SMS_NFS - specified directory not exported
637 ** SMS_FILESYS_ACCESS - invalid filesys access
638 **
639 **/
640
641##static int var_phys_id;
642
643setup_afil(q, argv)
644 struct query *q;
645 char *argv[];
646{
647 char *type;
648 int mach_id;
649 char *name;
650 char *access;
651
652 type = argv[1];
653 mach_id = *(int *)argv[2];
654 name = argv[3];
655 access = argv[5];
656 var_phys_id = 0;
657
658 if (!strcmp(type, "NFS"))
659 return (check_nfs(mach_id, name, access));
660 else
661 return(SMS_SUCCESS);
662}
663
664
665/* Verify the arguments, depending on the FStype. Also, if this is an
666 * NFS filesystem, then update any quotas for that filesystem to reflect
667 * the new phys_id.
668 */
669
670setup_ufil(q, argv)
671 struct query *q;
672 char *argv[];
673##{
674 int mach_id, status;
675 char *type, *name, *access;
676## int fid;
677
678 type = argv[2];
679 mach_id = *(int *)argv[3];
680 name = argv[4];
681 access = argv[6];
682 var_phys_id = 0;
683
684 if (!strcmp(type, "NFS")) {
685 status = check_nfs(mach_id, name, access);
686 fid = *(int *)argv[0];
687## replace nfsquota (phys_id = var_phys_id) where nfsquota.filsys_id = fid
688 return(status);
689 } else
690 return(SMS_SUCCESS);
691##}
692
693
694/* Find the NFS physical partition that the named directory is on.
695 * This is done by comparing the dir against the mount point of the
696 * partition. To make sure we get the correct match when there is
697 * more than one, we sort the query in reverse order by dir name.
698 */
699
700##check_nfs(mach_id, name, access)
701## int mach_id;
702 char *name;
703 char *access;
704##{
705## char dir[32];
706 char caccess;
707 register int status;
708 register char *cp1;
709 register char *cp2;
710
711 caccess = (isupper(*access)) ? tolower(*access) : *access;
712 if (caccess != 'r' && caccess != 'w') return(SMS_FILESYS_ACCESS);
713
714 status = SMS_NFS;
715## range of np is nfsphys
716## repeat retrieve (var_phys_id = np.#nfsphys_id, dir = trim(np.#dir))
717## where np.#mach_id = @mach_id sort by #dir:d {
718 cp1 = name;
719 cp2 = dir;
720 while (*cp2) {
721 if (*cp1++ != *cp2) break;
722 cp2++;
723 }
724 if (*cp2 == 0) {
725 status = SMS_SUCCESS;
726## endretrieve
727 }
728## }
729
730 return(status);
731##}
732
733
734/* setup_dfil: free any quota records and fsgroup info associated with
735 * a filesystem when it is deleted. Also adjust the allocation numbers.
736 */
737
738setup_dfil(q, argv, cl)
739 struct query *q;
740 char **argv;
741 client *cl;
742##{
743## int id;
744
745 id = *(int *)argv[0];
746## range of q is nfsquota
747## range of fs is filesys
748## range of n is nfsphys
749## repeat replace n (allocated=n.allocated-sum(q.quota where q.filsys_id=@id))
750## where n.nfsphys_id = fs.phys_id and fs.filsys_id = @id
751
752## repeat delete q where q.filsys_id = @id
753## repeat delete fsgroup where fsgroup.filsys_id = @id
754## repeat delete fsgroup where fsgroup.group_id = @id
755 return(SMS_SUCCESS);
756##}
757
758
759/* setup_dnfp: check to see that the nfs physical partition does not have
760 * any filesystems assigned to it before allowing it to be deleted.
761 */
762
763setup_dnfp(q, argv, cl)
764 struct query *q;
765 char **argv;
766 client *cl;
767##{
768## int id, exists;
769
770 id = *(int *)argv[0];
771## repeat retrieve (exists = any(filesys.label where filesys.phys_id = @id))
772 if (exists)
773 return(SMS_IN_USE);
774 return(SMS_SUCCESS);
775##}
776
777
778/* setup_dnfq: Remove allocation from nfsphys before deleting quota.
779 * argv[0] = filsys_id
780 * argv[1] = users_id
781 */
782
783setup_dnfq(q, argv, cl)
784 struct query *q;
785 char **argv;
786 client *cl;
787##{
788## int quota, fs, user;
789
790 fs = *(int *)argv[0];
791 user = *(int *)argv[1];
792
793## range of q is nfsquota
794## repeat retrieve (quota = q.#quota) where q.users_id = @user and
795## q.filsys_id = @fs
796## repeat replace nfsphys (allocated = nfsphys.allocated - @quota)
797## where nfsphys.nfsphys_id = filesys.#phys_id and filesys.filsys_id = @fs
798 return(SMS_SUCCESS);
799##}
800
801
802\f
803/* FOLLOWUP ROUTINES */
804
805/* generic set_modtime routine. This takes the table name from the query,
806 * and will update the modtime, modby, and modwho fields in the entry in
807 * the table whose name field matches argv[0].
808 */
809
810set_modtime(q, argv, cl)
811 struct query *q;
812 char *argv[];
813 client *cl;
814##{
815## char *name, *entity, *table;
816## int who;
817
818 entity = cl->entity;
819 who = cl->users_id;
820 table = q->rtable;
821 name = argv[0];
822
823## replace table (modtime = "now", modby = who, modwith = entity)
824## where table.#name = name
825 return(SMS_SUCCESS);
826##}
827
828/* generic set_modtime_by_id routine. This takes the table name from
829 * the query, and the id name from the validate record,
830 * and will update the modtime, modby, and modwho fields in the entry in
831 * the table whose id matches argv[0].
832 */
833
834set_modtime_by_id(q, argv, cl)
835 struct query *q;
836 char **argv;
837 client *cl;
838##{
839## char *entity, *table, *id_name;
840## int who, id;
841
842 entity = cl->entity;
843 who = cl->users_id;
844 table = q->rtable;
845 id_name = q->validate->object_id;
846
847 id = *(int *)argv[0];
848## replace table (modtime = "now", modby = who, modwith = entity)
849## where table.id_name = id
850 return(SMS_SUCCESS);
851##}
852
853
854/* Sets the finger modtime on a user record. The users_id will be in argv[0].
855 */
856
857set_finger_modtime(q, argv, cl)
858 struct query *q;
859 char *argv[];
860 client *cl;
861##{
862## int users_id, who;
863## char *entity;
864
865 entity = cl->entity;
866 who = cl->users_id;
867 users_id = *(int *)argv[0];
868
869## repeat replace u (fmodtime = "now", fmodby = @who, fmodwith = @entity)
870## where u.#users_id = @users_id
871 return(SMS_SUCCESS);
872##}
873
874
875/* Sets the pobox modtime on a user record. The users_id will be in argv[0].
876 */
877
878set_pobox_modtime(q, argv, cl)
879 struct query *q;
880 char **argv;
881 client *cl;
882##{
883## int users_id, who;
884## char *entity;
885
886 entity = cl->entity;
887 who = cl->users_id;
888 users_id = *(int *)argv[0];
889
890## repeat replace users (pmodtime = "now", pmodby = @who, pmodwith = @entity)
891## where users.#users_id = @users_id
892 return(SMS_SUCCESS);
893##}
894
895
896/* Like set_modtime, but uppercases the name first.
897 */
898
899set_uppercase_modtime(q, argv, cl)
900 struct query *q;
901 char **argv;
902 client *cl;
903##{
904## char *name, *entity, *table;
905## int who;
906
907 entity = cl->entity;
908 who = cl->users_id;
909 table = q->rtable;
910 name = argv[0];
911
912## replace table (modtime = "now", modby = who, modwith = entity)
913## where table.#name = uppercase(name)
914 return(SMS_SUCCESS);
915##}
916
917
918/* Sets the modtime on the machine whose mach_id is in argv[0]. This routine
919 * is necessary for add_machine_to_cluster becuase the table that query
920 * operates on is "mcm", not "machine".
921 */
922
923set_mach_modtime_by_id(q, argv, cl)
924 struct query *q;
925 char **argv;
926 client *cl;
927##{
928## char *entity;
929## int who, id;
930
931 entity = cl->entity;
932 who = cl->users_id;
933
934 id = *(int *)argv[0];
935## range of m is machine
936## repeat replace m (modtime = "now", modby = @who, modwith = @entity)
937## where m.mach_id = @id
938 return(SMS_SUCCESS);
939##}
940
941
942/* Sets the modtime on the cluster whose mach_id is in argv[0]. This routine
943 * is necessary for add_cluster_data and delete_cluster_data becuase the
944 * table that query operates on is "svc", not "cluster".
945 */
946
947set_cluster_modtime_by_id(q, argv, cl)
948 struct query *q;
949 char **argv;
950 client *cl;
951##{
952## char *entity;
953## int who, id;
954
955 entity = cl->entity;
956 who = cl->users_id;
957
958 id = *(int *)argv[0];
959## range of c is cluster
960## repeat replace c (modtime = "now", modby = @who, modwith = @entity)
961## where c.clu_id = @id
962 return(SMS_SUCCESS);
963##}
964
965
966/* sets the modtime on the serverhost where the service name is in argv[0]
967 * and the mach_id is in argv[1].
968 */
969
970set_serverhost_modtime(q, argv, cl)
971 struct query *q;
972 char **argv;
973 client *cl;
974##{
975## char *entity, *serv;
976## int who, id;
977
978 entity = cl->entity;
979 who = cl->users_id;
980
981 serv = argv[0];
982 id = *(int *)argv[1];
983## repeat replace sh (modtime = "now", modby = @who, modwith = @entity)
984## where sh.service = uppercase(@serv) and sh.mach_id = @id
985 return(SMS_SUCCESS);
986##}
987
988
989/* sets the modtime on the nfsphys where the mach_id is in argv[0] and the
990 * directory name is in argv[1].
991 */
992
993set_nfsphys_modtime(q, argv, cl)
994 struct query *q;
995 char **argv;
996 client *cl;
997##{
998## char *entity, *dir;
999## int who, id;
1000
1001 entity = cl->entity;
1002 who = cl->users_id;
1003
1004 id = *(int *)argv[0];
1005 dir = argv[1];
1006## repeat replace np (modtime = "now", modby = @who, modwith = @entity)
1007## where np.#dir = @dir and np.mach_id = @id
1008 return(SMS_SUCCESS);
1009##}
1010
1011
1012/* sets the modtime on a filesystem, where argv[0] contains the filesys
1013 * label.
1014 */
1015
1016set_filesys_modtime(q, argv, cl)
1017 struct query *q;
1018 char *argv[];
1019 client *cl;
1020##{
1021## char *label, *entity;
1022## int who;
1023
1024 entity = cl->entity;
1025 who = cl->users_id;
1026
1027 label = argv[0];
1028 if (!strcmp(q->shortname, "ufil"))
1029 label = argv[1];
1030
1031## repeat replace fs (modtime = "now", modby = @who, modwith = @entity,
1032## #phys_id = @var_phys_id) where fs.#label = @label
1033 return(SMS_SUCCESS);
1034##}
1035
1036
1037/* sets the modtime on a zephyr class, where argv[0] contains the class
1038 * name.
1039 */
1040
1041set_zephyr_modtime(q, argv, cl)
1042 struct query *q;
1043 char *argv[];
1044 client *cl;
1045##{
1046## char *class, *entity;
1047## int who;
1048
1049 entity = cl->entity;
1050 who = cl->users_id;
1051
1052 class = argv[0];
1053
1054## repeat replace z (modtime = "now", modby = @who, modwith = @entity)
1055## where z.#class = @class
1056 return(SMS_SUCCESS);
1057##}
1058
1059
1060/* fixes the modby field. This will be the second to last thing in the
1061 * argv, the argv length is determined from the query structure. It is
1062 * passed as a pointer to an integer. This will either turn it into a
1063 * username, or # + the users_id.
1064 */
1065followup_fix_modby(q, sq, v, action, actarg, cl)
1066 struct query *q;
1067 register struct save_queue *sq;
1068 struct validate *v;
1069 register int (*action)();
1070 register int actarg;
1071 client *cl;
1072##{
1073 register int i, j;
1074 char **argv, *malloc();
1075## int id, rowcount;
1076## char *name;
1077
1078 i = q->vcnt - 2;
1079 while (sq_get_data(sq, &argv)) {
1080 id = atoi(argv[i]);
1081 free(argv[i]);
1082 argv[i] = malloc(9);
1083 name = argv[i];
1084## repeat retrieve (name = users.login) where users.users_id = @id
1085## inquire_equel(rowcount = "rowcount")
1086 if (rowcount != 1) {
1087 sprintf(argv[i], "#%d", id);
1088 }
1089 (*action)(q->vcnt, argv, actarg);
1090 for (j = 0; j < q->vcnt; j++)
1091 free(argv[j]);
1092 free(argv);
1093 }
1094 sq_destroy(sq);
1095 return(SMS_SUCCESS);
1096##}
1097
1098
1099/**
1100 ** followup_ausr - add finger and pobox entries, set_user_modtime
1101 **
1102 ** Inputs:
1103 ** argv[0] - login (add_user)
1104 ** argv[3] - last name
1105 ** argv[4] - first name
1106 ** argv[5] - middle name
1107 **
1108 **/
1109
1110followup_ausr(q, argv, cl)
1111 struct query *q;
1112 char *argv[];
1113 client *cl;
1114##{
1115## int who;
1116## char *login, *entity;
1117## char fullname[129];
1118
1119 login = argv[0];
1120 who = cl->users_id;
1121 entity = cl->entity;
1122
1123 /* build fullname */
1124 if (strlen(argv[4]) && strlen(argv[5]))
1125 sprintf(fullname, "%s %s %s", argv[4], argv[5], argv[3]);
1126 else if (strlen(argv[4]))
1127 sprintf(fullname, "%s %s", argv[4], argv[3]);
1128 else
1129 sprintf(fullname, "%s", argv[3]);
1130
1131 /* create finger entry, pobox & set modtime on user */
1132## repeat replace u (modtime = "now", modby=@who, modwith=@entity,
1133## #fullname=@fullname, mit_affil = u.mit_year,
1134## fmodtime="now", fmodby=@who, fmodwith=@entity,
1135## potype="NONE", pmodtime="now", pmodby=@who, pmodwith=@entity)
1136## where u.#login = @login
1137
1138 return(SMS_SUCCESS);
1139##}
1140
1141
1142/* followup_gpob: fixes argv[2] based on the IDs currently there and the
1143 * type in argv[1]. Then completes the upcall to the user.
1144 *
1145 * argv[2] is of the form "123:234" where the first integer is the machine
1146 * ID if it is a pop box, and the second is the string ID if it is an SMTP
1147 * box. argv[1] should be "POP", "SMTP", or "NONE". Boxes of type NONE
1148 * are skipped.
1149 */
1150
1151followup_gpob(q, sq, v, action, actarg, cl)
1152 register struct query *q;
1153 register struct save_queue *sq;
1154 register struct validate *v;
1155 register int (*action)();
1156 int actarg;
1157 client *cl;
1158##{
1159 char **argv, *index();
1160 char *ptype, *p;
1161## char box[129], *name;
1162## int mid, sid, rowcount;
1163
1164 /* for each row */
1165 while (sq_get_data(sq, &argv)) {
1166 sms_trim_args(2, argv);
1167 ptype = argv[1];
1168 p = index(argv[2], ':');
1169 *p++ = 0;
1170 mid = atoi(argv[2]);
1171 sid = atoi(p);
1172 free(argv[2]);
1173
1174 if (!strcmp(ptype, "POP")) {
1175## repeat retrieve (box=machine.#name) where machine.mach_id=@mid
1176## inquire_equel(rowcount = "rowcount")
1177 if (rowcount != 1)
1178 return(SMS_MACHINE);
1179 } else if (!strcmp(ptype, "SMTP")) {
1180## repeat retrieve (box=strings.string) where strings.string_id=@sid
1181## inquire_equel(rowcount = "rowcount")
1182 if (rowcount != 1)
1183 return(SMS_STRING);
1184 } else /* ptype == "NONE" */ {
1185 goto skip;
1186 }
1187
1188 if (!strcmp(q->shortname, "gpob")) {
1189 sid = atoi(argv[4]);
1190 free(argv[4]);
1191 argv[4] = malloc(9);
1192 name = argv[4];
1193## repeat retrieve (name = users.login) where users.users_id = @sid
1194## inquire_equel(rowcount = "rowcount")
1195 if (rowcount != 1)
1196 sprintf(name, "#%d", sid);
1197 }
1198
1199 argv[2] = box;
1200 (*action)(q->vcnt, argv, actarg);
1201 skip:
1202 /* free saved data */
1203 free(argv[0]);
1204 free(argv[1]);
1205 free(argv);
1206 }
1207
1208 sq_destroy(sq);
1209 return (SMS_SUCCESS);
1210##}
1211
1212
1213/* followup_glin: fix the ace_name in argv[8]. argv[7] will contain the
1214 * ace_type: "LIST", "USER", or "NONE". Decode the id in argv[8] into the
1215 * proper name based on the type, and repace that string in the argv.
1216 * Also fixes the modby field by called followup_fix_modby.
1217 */
1218
1219followup_glin(q, sq, v, action, actarg, cl)
1220 register struct query *q;
1221 register struct save_queue *sq;
1222 register struct validate *v;
1223 register int (*action)();
1224 int actarg;
1225 client *cl;
1226##{
1227 char **argv, *malloc(), *realloc(), *type;
1228## char *name;
1229## int id, rowcount;
1230 int i, idx;
1231
1232 idx = 8;
1233 if (!strcmp(q->shortname, "gsin"))
1234 idx = 12;
1235
1236 while (sq_get_data(sq, &argv)) {
1237 sms_trim_args(q->vcnt, argv);
1238
1239 id = atoi(argv[i = q->vcnt - 2]);
1240 free(argv[i]);
1241 name = argv[i] = malloc(9);
1242## repeat retrieve (name = users.login) where users.users_id = @id
1243## inquire_equel(rowcount = "rowcount")
1244 if (rowcount != 1)
1245 sprintf(argv[i], "#%d", id);
1246
1247 id = atoi(argv[idx]);
1248 type = argv[idx - 1];
1249 if ((name = malloc(33)) == NULL)
1250 return(SMS_NO_MEM);
1251
1252 if (!strcmp(type, "LIST")) {
1253## repeat retrieve (name = list.#name) where list.list_id = @id
1254## inquire_equel(rowcount = "rowcount")
1255 if (rowcount != 1)
1256 strcpy(name, "???");
1257 } else if (!strcmp(type, "USER")) {
1258## repeat retrieve (name = users.login) where users.users_id = @id
1259## inquire_equel(rowcount = "rowcount")
1260 if (rowcount != 1)
1261 strcpy(name, "???");
1262 } else if (!strcmp(type, "NONE")) {
1263 strcpy(name, "NONE");
1264 } else
1265 strcpy(name, "???");
1266 free(argv[idx]);
1267 argv[idx] = name;
1268
1269 if (!strcmp(q->shortname, "glin") && atoi(argv[6]) == -1) {
1270 argv[6] = realloc(argv[6], strlen(UNIQUE_GID) + 1);
1271 strcpy(argv[6], UNIQUE_GID);
1272 }
1273
1274 /* send the data */
1275 (*action)(q->vcnt, argv, actarg);
1276
1277 /* free saved data */
1278 for (i = 0; i < q->vcnt; i++)
1279 free(argv[i]);
1280 free(argv);
1281 }
1282
1283 sq_destroy(sq);
1284 return (SMS_SUCCESS);
1285##}
1286
1287
1288/** followup_amtl - followup for amtl and dmfl; when adding a list
1289 ** member to a maillist, make member list a maillist also
1290 ** unless list is a user-group.
1291 ** Then set_list_modtime_by_id.
1292 **
1293 ** Inputs:
1294 ** argv[0] - list_id
1295 ** argv[1] - member_type
1296 ** argv[2] - member_id
1297 **
1298 **/
1299
1300followup_amtl(q, argv, cl)
1301 struct query *q;
1302 char *argv[];
1303 client *cl;
1304##{
1305## int list_id;
1306## int member_id;
1307## int exists, who;
1308## char *entity;
1309
1310 list_id = *(int *)argv[0];
1311 entity = cl->entity;
1312 who = cl->users_id;
1313
1314## range of l is list
1315## repeat replace l (modtime = "now", modby = @who, modwith = @entity)
1316## where l.#list_id = @list_id
1317
1318 /* if query is not amtl or if member_type is not LIST then return */
1319 if (bcmp(q->shortname, "amtl", 4) || bcmp(argv[1], "LIST", 4))
1320 return(SMS_SUCCESS);
1321
1322 member_id = *(int *)argv[2];
1323
1324 /* is parent list a mailing list? */
1325## repeat retrieve (exists = l.maillist) where l.#list_id=@list_id
1326 if (!exists)
1327 return(SMS_SUCCESS);
1328
1329 /* list is not a user-group; add list to maillist table */
1330## repeat replace l (maillist = 1) where l.#list_id = @member_id
1331 return(SMS_SUCCESS);
1332##}
1333
1334
1335/* followup_anfq: Add allocation to nfsphys after creating quota.
1336 * argv[0] = filsys_id
1337 * argv[2] = ascii(quota)
1338 */
1339
1340followup_anfq(q, argv, cl)
1341 struct query *q;
1342 char **argv;
1343 client *cl;
1344##{
1345## int quota, user, fs, who;
1346## char *entity;
1347
1348 fs = *(int *)argv[0];
1349 user = *(int *)argv[1];
1350 quota = atoi(argv[2]);
1351 who = cl->users_id;
1352 entity = cl->entity;
1353
1354## repeat replace nq (modtime = "now", modby = @who, modwith = @entity)
1355## where nq.filsys_id = @fs and nq.users_id = @user
1356## repeat replace nfsphys (allocated = nfsphys.allocated + @quota)
1357## where nfsphys.nfsphys_id = filesys.#phys_id and filesys.filsys_id = @fs
1358 return(SMS_SUCCESS);
1359##}
1360
1361
1362/* followup_gzcl:
1363 */
1364
1365followup_gzcl(q, sq, v, action, actarg, cl)
1366 register struct query *q;
1367 register struct save_queue *sq;
1368 register struct validate *v;
1369 register int (*action)();
1370 int actarg;
1371 client *cl;
1372##{
1373## char *name;
1374## int rowcount, id;
1375 char **argv;
1376 int i;
1377
1378 while (sq_get_data(sq, &argv)) {
1379 sms_trim_args(q->vcnt, argv);
1380
1381 id = atoi(argv[i = q->vcnt - 2]);
1382 free(argv[i]);
1383 name = argv[i] = malloc(9);
1384## repeat retrieve (name = users.login) where users.users_id = @id
1385## inquire_equel(rowcount = "rowcount")
1386 if (rowcount != 1)
1387 sprintf(argv[i], "#%d", id);
1388
1389 for (i = 1; i < 8; i+=2) {
1390 id = atoi(argv[i+1]);
1391 free(argv[i+1]);
1392 if ((name = argv[i+1] = malloc(33)) == NULL)
1393 return(SMS_NO_MEM);
1394 if (!strcmp(argv[i], "LIST")) {
1395## repeat retrieve (name = list.#name) where list.list_id = @id
1396## inquire_equel(rowcount = "rowcount")
1397 if (rowcount != 1)
1398 strcpy(name, "???");
1399 } else if (!strcmp(argv[i], "USER")) {
1400## repeat retrieve (name = users.login) where users.users_id = @id
1401## inquire_equel(rowcount = "rowcount")
1402 if (rowcount != 1)
1403 strcpy(name, "???");
1404 } else if (!strcmp(argv[i], "NONE")) {
1405 strcpy(name, "NONE");
1406 } else {
1407 strcpy(name, "???");
1408 }
1409 }
1410
1411 /* send the data */
1412 (*action)(q->vcnt, argv, actarg);
1413
1414 /* free saved data */
1415 for (i = 0; i < q->vcnt; i++)
1416 free(argv[i]);
1417 free(argv);
1418 }
1419 sq_destroy(sq);
1420 return(SMS_SUCCESS);
1421##}
1422
1423
1424/* followup_gsha:
1425 */
1426
1427followup_gsha(q, sq, v, action, actarg, cl)
1428 register struct query *q;
1429 register struct save_queue *sq;
1430 register struct validate *v;
1431 register int (*action)();
1432 int actarg;
1433 client *cl;
1434##{
1435## char *name;
1436## int rowcount, id;
1437 char **argv;
1438 int i;
1439
1440 while (sq_get_data(sq, &argv)) {
1441 sms_trim_args(q->vcnt, argv);
1442
1443 id = atoi(argv[4]);
1444 free(argv[4]);
1445 name = argv[4] = malloc(9);
1446## repeat retrieve (name = users.login) where users.users_id = @id
1447## inquire_equel(rowcount = "rowcount")
1448 if (rowcount != 1)
1449 sprintf(argv[4], "#%d", id);
1450
1451 id = atoi(argv[2]);
1452 free(argv[2]);
1453 if ((name = argv[2] = malloc(33)) == NULL)
1454 return(SMS_NO_MEM);
1455 if (!strcmp(argv[1], "LIST")) {
1456## repeat retrieve (name = list.#name) where list.list_id = @id
1457## inquire_equel(rowcount = "rowcount")
1458 if (rowcount != 1)
1459 strcpy(name, "???");
1460 } else if (!strcmp(argv[1], "USER")) {
1461## repeat retrieve (name = users.login) where users.users_id = @id
1462## inquire_equel(rowcount = "rowcount")
1463 if (rowcount != 1)
1464 strcpy(name, "???");
1465 } else if (!strcmp(argv[1], "NONE")) {
1466 strcpy(name, "NONE");
1467 } else {
1468 strcpy(name, "???");
1469 }
1470
1471 /* send the data */
1472 (*action)(q->vcnt, argv, actarg);
1473
1474 /* free saved data */
1475 for (i = 0; i < q->vcnt; i++)
1476 free(argv[i]);
1477 free(argv);
1478 }
1479 sq_destroy(sq);
1480 return(SMS_SUCCESS);
1481##}
1482
1483
1484\f
1485/* Special query routines */
1486
1487/* set_pobox - this does all of the real work.
1488 * argv = user_id, type, box
1489 * if type is POP, then box should be a machine, and its ID should be put in
1490 * pop_id. If type is SMTP, then box should be a string and its ID should
1491 * be put in box_id. If type is NONE, then box doesn't matter.
1492 */
1493
1494int set_pobox(q, argv, cl)
1495 struct query *q;
1496 char **argv;
1497 client *cl;
1498##{
1499## int user, id, rowcount;
1500## char *box, potype[9];
1501
1502 box = argv[2];
1503 user = *(int *)argv[0];
1504
1505## repeat retrieve (id = users.pop_id, potype = users.#potype)
1506## where users.users_id = @user
1507 if (!strcmp(strtrim(potype), "POP"))
1508 set_pop_usage(id, -1);
1509
1510 if (!strcmp(argv[1], "POP")) {
1511## repeat retrieve (id=machine.mach_id) where machine.name=uppercase(@box)
1512## inquire_equel(rowcount = "rowcount")
1513 if (rowcount != 1)
1514 return(SMS_MACHINE);
1515## repeat replace users (#potype = "POP", pop_id = @id)
1516## where users.users_id = @user
1517 set_pop_usage(id, 1);
1518 } else if (!strcmp(argv[1], "SMTP")) {
1519## range of s is strings
1520## repeat retrieve (id = s.string_id) where s.string = @box
1521## inquire_equel (rowcount = "rowcount")
1522 if (rowcount == 0) {
1523## range of v is values
1524## repeat retrieve (id = v.value) where v.name = "strings_id"
1525 id++;
1526## repeat replace v (value = @id) where v.name = "strings_id"
1527## append to strings (string_id = id, string = box)
1528 }
1529## repeat replace users (#potype = "SMTP", box_id = @id)
1530## where users.users_id = @user
1531 } else /* argv[1] == "NONE" */ {
1532## repeat replace users (#potype = "NONE") where users.users_id = @user
1533 }
1534
1535 set_pobox_modtime(q, argv, cl);
1536## repeat replace tblstats (updates = tblstats.updates + 1, modtime = "now")
1537## where tblstats.#table = "users"
1538 return(SMS_SUCCESS);
1539##}
1540
1541
1542/* get_list_info: passed a wildcard list name, returns lots of stuff about
1543 * each list. This is tricky: first build a queue of all requested
1544 * data. Rest of processing consists of fixing gid, ace_name, and modby.
1545 */
1546
1547get_list_info(q, aargv, cl, action, actarg)
1548 register struct query *q;
1549 char **aargv;
1550 client *cl;
1551 register int (*action)();
1552 int actarg;
1553##{
1554 char *argv[13], *malloc(), *realloc();
1555## char *name, acl_type[9], listname[33], active[5], public[5], hidden[5];
1556## char maillist[5], group[5], gid[6], acl_name[33], desc[256], modtime[27];
1557## char modby[9], modwith[9];
1558## int id, rowcount, acl_id, hid, modby_id;
1559 int returned;
1560 struct save_queue *sq, *sq_create();
1561
1562 returned = rowcount = 0;
1563 name = aargv[0];
1564
1565 sq = sq_create();
1566## range of l is list
1567## repeat retrieve (id = l.list_id) where l.#name = @name {
1568 sq_save_data(sq, id);
1569 rowcount++;
1570## }
1571 if (rowcount == 0)
1572 return(SMS_NO_MATCH);
1573
1574 argv[0] = listname; argv[1] = active; argv[2] = public; argv[3] = hidden;
1575 argv[4] = maillist; argv[5] = group; argv[6] = gid; argv[7] = acl_type;
1576 argv[8] = acl_name; argv[9] = desc; argv[10] = modtime; argv[11] = modby;
1577 argv[12] = modwith;
1578
1579 while (sq_get_data(sq, &id)) {
1580 if (id == 0)
1581 continue;
1582 argv[6] = gid;
1583## repeat retrieve (listname = l.#name, active = text(l.#active),
1584## public = text(l.#public), hidden = text(l.#hidden),
1585## hid = l.#hidden, maillist = text(l.#maillist),
1586## group = text(l.#group), gid = text(l.#gid),
1587## acl_type = trim(l.#acl_type), acl_id = l.#acl_id,
1588## desc = l.#desc, modtime = l.#modtime, modby_id = l.#modby,
1589## modwith =l.#modwith)
1590## where l.list_id = @id
1591
1592 if (atoi(gid) == -1)
1593 argv[6] = UNIQUE_GID;
1594
1595 if (!strcmp(acl_type, "LIST")) {
1596## repeat retrieve (acl_name = l.#name) where l.list_id = @acl_id
1597## inquire_equel(rowcount = "rowcount")
1598 if (rowcount != 1)
1599 strcpy(acl_name, "???");
1600 } else if (!strcmp(acl_type, "USER")) {
1601## repeat retrieve (acl_name = users.#login)
1602## where users.users_id = @acl_id
1603## inquire_equel(rowcount = "rowcount")
1604 if (rowcount != 1)
1605 strcpy(acl_name, "???");
1606 } else if (!strcmp(acl_type, "NONE")) {
1607 strcpy(acl_name, "NONE");
1608 } else
1609 strcpy(acl_name, "???");
1610
1611## repeat retrieve (modby = users.login) where users.users_id = @modby_id
1612## inquire_equel(rowcount = "rowcount")
1613 if (rowcount != 1)
1614 sprintf(modby, "#%d", id);
1615
1616 sms_trim_args(q->vcnt, argv);
1617 returned++;
1618 (*action)(q->vcnt, argv, actarg);
1619 }
1620
1621 sq_destroy(sq);
1622## repeat replace tblstats (retrieves = tblstats.retrieves + 1)
1623## where tblstats.#table = "list"
1624
1625 return (SMS_SUCCESS);
1626##}
1627
1628
1629/* get_ace_use - given a type and a name, return a type and a name.
1630 * The ace_type is one of "LIST", "USER", "RLIST", or "RUSER" in argv[0],
1631 * and argv[1] will contain the ID of the entity in question. The R*
1632 * types mean to recursively look at every containing list, not just
1633 * when the object in question is a direct member. On return, the
1634 * usage type will be one of LIST, SERVICE, FILESYS, QUOTA, QUERY, or ZEPHYR.
1635 */
1636
1637int get_ace_use(q, argv, cl, action, actarg)
1638 struct query *q;
1639 char *argv[];
1640 client *cl;
1641 int (*action)();
1642 int actarg;
1643##{
1644 int found = 0;
1645## char *atype;
1646## int aid, listid, id;
1647 struct save_queue *sq, *sq_create();
1648
1649 atype = argv[0];
1650 aid = *(int *)argv[1];
1651 if (!strcmp(atype, "LIST") || !strcmp(atype, "USER")) {
1652 return(get_ace_internal(atype, aid, action, actarg));
1653 }
1654
1655 sq = sq_create();
1656 if (!strcmp(atype, "RLIST")) {
1657 sq_save_data(sq, aid);
1658 /* get all the list_id's of containing lists */
1659## range of m is members
1660 while (sq_get_data(sq, &id)) {
1661## repeat retrieve (listid = m.list_id)
1662## where m.member_type = "LIST" and m.member_id = @id {
1663 sq_save_unique_data(sq, listid);
1664## }
1665 }
1666 /* now process each one */
1667 while (sq_get_data(sq, &id)) {
1668 if (get_ace_internal("LIST", id, action, actarg) == SMS_SUCCESS)
1669 found++;
1670 }
1671 }
1672
1673 if (!strcmp(atype, "RUSER")) {
1674## range of m is members
1675## repeat retrieve (listid = m.list_id)
1676## where m.member_type = "USER" and m.member_id = @aid {
1677 sq_save_data(sq, listid);
1678## }
1679 /* get all the list_id's of containing lists */
1680 while (sq_get_data(sq, &id)) {
1681## repeat retrieve (listid = m.list_id)
1682## where m.member_type = "LIST" and m.member_id = @id {
1683 sq_save_unique_data(sq, listid);
1684## }
1685 }
1686 /* now process each one */
1687 while (sq_get_data(sq, &id)) {
1688 if (get_ace_internal("LIST", id, action, actarg) == SMS_SUCCESS)
1689 found++;
1690 }
1691 if (get_ace_internal("USER", aid, action, actarg) == SMS_SUCCESS)
1692 found++;
1693 }
1694
1695 sq_destroy(sq);
1696 if (!found) return(SMS_NO_MATCH);
1697 return(SMS_SUCCESS);
1698##}
1699
1700
1701/* This looks up a single list or user for ace use. atype must be "USER"
1702 * or "LIST", and aid is the ID of the corresponding object. This is used
1703 * by get_ace_use above.
1704 */
1705
1706##get_ace_internal(atype, aid, action, actarg)
1707## char *atype;
1708## int aid;
1709 int (*action)();
1710 int actarg;
1711##{
1712 char *rargv[2];
1713 int found = 0;
1714## char name[33];
1715
1716 rargv[1] = name;
1717 if (!strcmp(atype, "LIST")) {
1718 rargv[0] = "FILESYS";
1719## repeat retrieve (name = filesys.label)
1720## where filesys.owners = @aid {
1721 (*action)(2, rargv, actarg);
1722 found++;
1723## }
1724
1725 rargv[0] = "QUERY";
1726## repeat retrieve (name = capacls.capability)
1727## where capacls.list_id = @aid {
1728 (*action)(2, rargv, actarg);
1729 found++;
1730## }
1731 } else if (!strcmp(atype, "USER")) {
1732 rargv[0] = "FILESYS";
1733## repeat retrieve (name = filesys.label)
1734## where filesys.owner = @aid {
1735 (*action)(2, rargv, actarg);
1736 found++;
1737## }
1738 }
1739
1740 rargv[0] = "LIST";
1741## repeat retrieve (name = list.#name)
1742## where list.acl_type = @atype and list.acl_id = @aid {
1743 (*action)(2, rargv, actarg);
1744 found++;
1745## }
1746
1747 rargv[0] = "SERVICE";
1748## repeat retrieve (name = servers.#name)
1749## where servers.acl_type = @atype and servers.acl_id = @aid {
1750 (*action)(2, rargv, actarg);
1751 found++;
1752## }
1753
1754 rargv[0] = "HOSTACCESS";
1755## repeat retrieve (name = machine.#name)
1756## where machine.mach_id = hostaccess.mach_id and
1757## hostaccess.acl_type = @atype and hostaccess.acl_id = @aid {
1758 (*action)(2, rargv, actarg);
1759 found++;
1760## }
1761 rargv[0] = "ZEPHYR";
1762## repeat retrieve (name = zephyr.class)
1763## where zephyr.xmt_type = @atype and zephyr.xmt_id = @aid or
1764## zephyr.sub_type = @atype and zephyr.sub_id = @aid or
1765## zephyr.iws_type = @atype and zephyr.iws_id = @aid or
1766## zephyr.iui_type = @atype and zephyr.iui_id = @aid {
1767 (*action)(2, rargv, actarg);
1768 found++;
1769## }
1770
1771 if (!found) return(SMS_NO_MATCH);
1772 return(SMS_SUCCESS);
1773##}
1774
1775
1776/* get_lists_of_member - given a type and a name, return the name and flags
1777 * of all of the lists of the given member. The member_type is one of
1778 * "LIST", "USER", "STRING", "RLIST", "RUSER", or "RSTRING" in argv[0],
1779 * and argv[1] will contain the ID of the entity in question. The R*
1780 * types mean to recursively look at every containing list, not just
1781 * when the object in question is a direct member.
1782 */
1783
1784int get_lists_of_member(q, argv, cl, action, actarg)
1785 struct query *q;
1786 char *argv[];
1787 client *cl;
1788 int (*action)();
1789 int actarg;
1790##{
1791 int found = 0;
1792## char *atype;
1793## int aid, listid, id;
1794 struct save_queue *sq, *sq_create();
1795
1796 atype = argv[0];
1797 aid = *(int *)argv[1];
1798 if (!strcmp(atype, "LIST") ||
1799 !strcmp(atype, "USER") ||
1800 !strcmp(atype, "STRING")) {
1801 return(glom_internal(atype, aid, action, actarg));
1802 }
1803
1804 sq = sq_create();
1805 if (!strcmp(atype, "RLIST")) {
1806 sq_save_data(sq, aid);
1807 /* get all the list_id's of containing lists */
1808## range of m is members
1809 while (sq_get_data(sq, &id)) {
1810## repeat retrieve (listid = m.list_id)
1811## where m.member_type = "LIST" and m.member_id = @id {
1812 sq_save_unique_data(sq, listid);
1813## }
1814 }
1815 /* now process each one */
1816 while (sq_get_data(sq, &id)) {
1817 if (glom_internal("LIST", id, action, actarg) == SMS_SUCCESS)
1818 found++;
1819 }
1820 }
1821
1822 if (!strcmp(atype, "RUSER")) {
1823## range of m is members
1824## repeat retrieve (listid = m.list_id)
1825## where m.member_type = "USER" and m.member_id = @aid {
1826 sq_save_data(sq, listid);
1827## }
1828 /* get all the list_id's of containing lists */
1829 while (sq_get_data(sq, &id)) {
1830## repeat retrieve (listid = m.list_id)
1831## where m.member_type = "LIST" and m.member_id = @id {
1832 sq_save_unique_data(sq, listid);
1833## }
1834 }
1835 /* now process each one */
1836 while (sq_get_data(sq, &id)) {
1837 if (glom_internal("LIST", id, action, actarg) == SMS_SUCCESS)
1838 found++;
1839 }
1840 if (glom_internal("USER", aid, action, actarg) == SMS_SUCCESS)
1841 found++;
1842 }
1843
1844 if (!strcmp(atype, "RSTRING")) {
1845## range of m is members
1846## repeat retrieve (listid = m.list_id)
1847## where m.member_type = "STRING" and m.member_id = @aid {
1848 sq_save_data(sq, listid);
1849## }
1850 /* get all the list_id's of containing lists */
1851 while (sq_get_data(sq, &id)) {
1852## repeat retrieve (listid = m.list_id)
1853## where m.member_type = "LIST" and m.member_id = @id {
1854 sq_save_unique_data(sq, listid);
1855## }
1856 }
1857 /* now process each one */
1858 while (sq_get_data(sq, &id)) {
1859 if (glom_internal("LIST", id, action, actarg) == SMS_SUCCESS)
1860 found++;
1861 }
1862 if (glom_internal("STRING", aid, action, actarg) == SMS_SUCCESS)
1863 found++;
1864 }
1865
1866## repeat replace tblstats (retrieves = tblstats.retrieves + 1)
1867## where tblstats.#table = "members"
1868 sq_destroy(sq);
1869 if (!found) return(SMS_NO_MATCH);
1870 return(SMS_SUCCESS);
1871##}
1872
1873
1874/* This looks up a single list, user, or string as a member. atype must be
1875 * "USER", "LIST", or "STRING" and aid is the ID of the corresponding object.
1876 * This is used by get_lists_of_members above.
1877 */
1878
1879##glom_internal(atype, aid, action, actarg)
1880## char *atype;
1881## int aid;
1882 int (*action)();
1883 int actarg;
1884##{
1885 char *rargv[6];
1886 int found = 0;
1887## char name[33], active[5], public[5], hidden[5], maillist[5], group[5];
1888
1889 rargv[0] = name;
1890 rargv[1] = active;
1891 rargv[2] = public;
1892 rargv[3] = hidden;
1893 rargv[4] = maillist;
1894 rargv[5] = group;
1895## repeat retrieve (name = list.#name, active = text(list.#active),
1896## public = text(list.#public), hidden = text(list.#hidden),
1897## maillist = text(list.#maillist), group = text(list.#group))
1898## where list.list_id = m.list_id and
1899## m.member_type = @atype and m.member_id = @aid {
1900 (*action)(6, rargv, actarg);
1901 found++;
1902## }
1903
1904 if (!found) return(SMS_NO_MATCH);
1905 return(SMS_SUCCESS);
1906##}
1907
1908
1909/* qualified_get_lists: passed "TRUE", "FALSE", or "DONTCARE" for each of
1910 * the five flags associated with each list. It will return the name of
1911 * each list that meets the quailifications. It does this by building a
1912 * where clause based on the arguments, then doing a retrieve.
1913 */
1914
1915static char *lflags[5] = { "active", "public", "hidden", "maillist", "group" };
1916
1917int qualified_get_lists(q, argv, cl, action, actarg)
1918 struct query *q;
1919 char *argv[];
1920 client *cl;
1921 int (*action)();
1922 int actarg;
1923{
1924 return(qualified_get(q, argv, action, actarg, "l.list_id != 0",
1925 "l", "name", lflags));
1926}
1927
1928
1929/** get_members_of_list - optimized query for retrieval of list members
1930 **
1931 ** Inputs:
1932 ** argv[0] - list_id
1933 **
1934 ** Description:
1935 ** - retrieve USER members, then LIST members, then STRING members
1936 **/
1937
1938get_members_of_list(q, argv, cl, action, actarg)
1939 struct query *q;
1940 char *argv[];
1941 client *cl;
1942 int (*action)();
1943 int actarg;
1944##{
1945## int list_id;
1946## char member_name[129];
1947 char *targv[2];
1948
1949 list_id = *(int *)argv[0];
1950 targv[0] = "USER";
1951 targv[1] = member_name;
1952
1953## range of m is members
1954## repeat retrieve (member_name = users.login)
1955## where m.#list_id = @list_id and m.member_type = "USER"
1956## and m.member_id = users.users_id
1957## sort by #member_name
1958## {
1959 (*action)(2, targv, actarg);
1960## }
1961
1962 targv[0] = "LIST";
1963## repeat retrieve (member_name = list.name)
1964## where m.#list_id = @list_id and m.member_type = "LIST"
1965## and m.member_id = list.#list_id
1966## sort by #member_name
1967## {
1968 (*action)(2, targv, actarg);
1969## }
1970
1971 targv[0] = "STRING";
1972## repeat retrieve (member_name = strings.string)
1973## where m.#list_id = @list_id and m.member_type = "STRING"
1974## and m.member_id = strings.string_id
1975## sort by #member_name
1976## {
1977 (*action)(2, targv, actarg);
1978## }
1979
1980## repeat replace tblstats (retrieves = tblstats.retrieves + 1)
1981## where tblstats.#table = "members"
1982 return(SMS_SUCCESS);
1983##}
1984
1985
1986/* count_members_of_list: this is a simple query, but it cannot be done
1987 * through the dispatch table.
1988 */
1989
1990int count_members_of_list(q, argv, cl, action, actarg)
1991 struct query *q;
1992 char *argv[];
1993 client *cl;
1994 int (*action)();
1995 int actarg;
1996##{
1997## int list, ct = 0;
1998 char *rargv[1], countbuf[5];
1999
2000 list = *(int *)argv[0];
2001 rargv[0] = countbuf;
2002## repeat retrieve (ct = count(members.list_id where members.list_id = @list))
2003 sprintf(countbuf, "%d", ct);
2004 (*action)(1, rargv, actarg);
2005## repeat replace tblstats (retrieves = tblstats.retrieves + 1)
2006## where tblstats.#table = "members"
2007 return(SMS_SUCCESS);
2008##}
2009
2010
2011/* qualified_get_server: passed "TRUE", "FALSE", or "DONTCARE" for each of
2012 * the three flags associated with each service. It will return the name of
2013 * each service that meets the quailifications. It does this by building a
2014 * where clause based on the arguments, then doing a retrieve.
2015 */
2016
2017static char *sflags[3] = { "enable", "inprogress", "harderror" };
2018
2019int qualified_get_server(q, argv, cl, action, actarg)
2020 struct query *q;
2021 char *argv[];
2022 client *cl;
2023 int (*action)();
2024 int actarg;
2025{
2026 return(qualified_get(q, argv, action, actarg, "s.name != \"\"",
2027 "s", "name", sflags));
2028}
2029
2030
2031/* generic qualified get routine, used by qualified_get_lists,
2032 * qualified_get_server, and qualified_get_serverhost.
2033 * Args:
2034 * start - a simple where clause, must not be empty
2035 * range - the name of the range variable
2036 * field - the field to return
2037 * flags - an array of strings, names of the flag variables
2038 */
2039
2040int qualified_get(q, argv, action, actarg, start, range, field, flags)
2041 struct query *q;
2042 char *argv[];
2043 int (*action)();
2044 int actarg;
2045 char *start;
2046 char *range;
2047 char *field;
2048 char *flags[];
2049##{
2050## char name[33], qual[256], *rvar, *rtbl, *rfield;
2051 char *rargv[1], buf[32];
2052## int rowcount, i;
2053
2054 strcpy(qual, start);
2055 for (i = 0; i < q->argc; i++) {
2056 if (!strcmp(argv[i], "TRUE")) {
2057 sprintf(buf, " and %s.%s != 0", range, flags[i]);
2058 (void) strcat(qual, buf);
2059 } else if (!strcmp(argv[i], "FALSE")) {
2060 sprintf(buf, " and %s.%s = 0", range, flags[i]);
2061 (void) strcat(qual, buf);
2062 }
2063 }
2064
2065 rargv[0] = name;
2066 rvar = range;
2067 rtbl = q->rtable;
2068 rfield = field;
2069## range of rvar is rtbl
2070## retrieve (name = rvar.rfield) where qual {
2071 (*action)(1, rargv, actarg);
2072## }
2073## inquire_equel(rowcount = "rowcount")
2074## repeat replace tblstats (retrieves = tblstats.retrieves + 1)
2075## where tblstats.#table = @rtbl
2076 if (rowcount == 0)
2077 return(SMS_NO_MATCH);
2078 return(SMS_SUCCESS);
2079##}
2080
2081
2082/* qualified_get_serverhost: passed "TRUE", "FALSE", or "DONTCARE" for each of
2083 * the five flags associated with each serverhost. It will return the name of
2084 * each service and host that meets the quailifications. It does this by
2085 * building a where clause based on the arguments, then doing a retrieve.
2086 */
2087
2088static char *shflags[6] = { "service", "enable", "override", "success",
2089 "inprogress", "hosterror" };
2090
2091int qualified_get_serverhost(q, argv, cl, action, actarg)
2092 struct query *q;
2093 char *argv[];
2094 client *cl;
2095 int (*action)();
2096 int actarg;
2097##{
2098## char sname[33], mname[33], qual[256];
2099 char *rargv[2], buf[32];
2100## int rowcount, i;
2101
2102 sprintf(qual, "machine.mach_id = sh.mach_id and sh.service = uppercase(\"%s\")",
2103 argv[0]);
2104 for (i = 1; i < q->argc; i++) {
2105 if (!strcmp(argv[i], "TRUE")) {
2106 sprintf(buf, " and sh.%s != 0", shflags[i]);
2107 strcat(qual, buf);
2108 } else if (!strcmp(argv[i], "FALSE")) {
2109 sprintf(buf, " and sh.%s = 0", shflags[i]);
2110 strcat(qual, buf);
2111 }
2112 }
2113
2114 rargv[0] = sname;
2115 rargv[1] = mname;
2116## range of sh is serverhosts
2117## retrieve (sname = sh.service, mname = machine.name) where qual {
2118 (*action)(2, rargv, actarg);
2119## }
2120## inquire_equel(rowcount = "rowcount")
2121## repeat replace tblstats (retrieves = tblstats.retrieves + 1)
2122## where tblstats.#table = "serverhosts"
2123 if (rowcount == 0)
2124 return(SMS_NO_MATCH);
2125 return(SMS_SUCCESS);
2126##}
2127
2128
2129/* register_user - change user's login name and allocate a pobox, group,
2130 * filesystem, and quota for them. The user's status must start out as 0,
2131 * and is left as 2. Arguments are: user's UID, new login name, and user's
2132 * type for filesystem allocation (SMS_FS_STUDENT, SMS_FS_FACULTY,
2133 * SMS_FS_STAFF, SMS_FS_MISC).
2134 */
2135
2136register_user(q, argv, cl)
2137 struct query *q;
2138 char **argv;
2139 client *cl;
2140##{
2141## char *login, dir[65], *entity, *directory, machname[33];
2142## int who, rowcount, mid, uid, users_id, flag, utype, nid, list_id, quota;
2143## int size, alloc, pid, m_id;
2144 int maxsize;
2145
2146 entity = cl->entity;
2147 who = cl->users_id;
2148
2149 uid = atoi(argv[0]);
2150 login = argv[1];
2151 utype = atoi(argv[2]);
2152
2153## range of u is users
2154## range of l is list
2155## range of sh is serverhosts
2156## range of n is nfsphys
2157## range of m is machine
2158
2159 /* find user */
2160## repeat retrieve (users_id = u.#users_id)
2161## where u.#uid = @uid and u.status = 0
2162## inquire_equel(rowcount = "rowcount");
2163 if (rowcount == 0)
2164 return(SMS_NO_MATCH);
2165 if (rowcount > 1)
2166 return(SMS_NOT_UNIQUE);
2167
2168 /* check new login name */
2169## repeat retrieve (flag = any(u.#login where u.#login = @login))
2170 if (flag)
2171 return(SMS_IN_USE);
2172## repeat retrieve (flag = any(l.#name where l.#name = @login))
2173 if (flag)
2174 return(SMS_IN_USE);
2175## repeat retrieve (flag = any(filesys.#label where filesys.#label = @login))
2176 if (flag)
2177 return(SMS_IN_USE);
2178 com_err(whoami, 0, "new login name OK");
2179
2180 /* choose place for pobox, put in mid */
2181## repeat retrieve (mid = sh.mach_id, machname = m.name)
2182## where sh.service = "POP" and m.mach_id = sh.mach_id and
2183## sh.value2 - sh.value1 = max(sh.value2-sh.value1 where sh.service="POP")
2184## inquire_equel(rowcount = "rowcount");
2185 if (rowcount == 0)
2186 return(SMS_NO_POBOX);
2187
2188 /* change login name, set pobox */
2189## repeat replace u (#login = @login, status = 2, modtime = "now",
2190## modby = @who, modwith = @entity, potype="POP",
2191## pop_id = @mid, pmodtime="now", pmodby=@who,
2192## pmodwith=@entity)
2193## where u.#users_id = @users_id
2194## inquire_equel(rowcount = "rowcount");
2195 if (rowcount != 1)
2196 return(SMS_INTERNAL);
2197 set_pop_usage(mid, 1);
2198 com_err(whoami, 0, "set login name to %s and pobox to %s", login,
2199 trim(machname));
2200
2201 /* create group list */
2202 if (set_next_object_id("gid", "list"))
2203 return(SMS_NO_ID);
2204 if (set_next_object_id("list_id", "list"))
2205 return(SMS_NO_ID);
2206## repeat retrieve (list_id = values.value) where values.name = "list_id"
2207## inquire_equel(rowcount = "rowcount");
2208 if (rowcount != 1)
2209 return(SMS_INTERNAL);
2210## repeat append list (name = @login, #list_id = @list_id, active = 1,
2211## public = 0, hidden = 0, maillist = 0, group = 1,
2212## #gid = values.value, desc = "User Group",
2213## acl_type = "USER", acl_id = @users_id, modtime = "now",
2214## modby = @who, modwith = @entity)
2215## where values.name = "gid"
2216## inquire_equel(rowcount = "rowcount");
2217 if (rowcount != 1)
2218 return(SMS_INTERNAL);
2219## repeat append members (#list_id = @list_id, member_type = "USER",
2220## member_id = @users_id)
2221## inquire_equel(rowcount = "rowcount");
2222 if (rowcount != 1)
2223 return(SMS_INTERNAL);
2224 com_err(whoami, 0, "group list created");
2225
2226 /* decide where to put filesystem */
2227 maxsize = 0;
2228 directory = NULL;
2229## repeat retrieve (mid = n.mach_id, dir = trim(n.#dir), nid = n.nfsphys_id,
2230## flag = n.status, size = n.#size, alloc = n.allocated) {
2231 if ((flag & utype) && (size != 0) && (size - alloc > maxsize)) {
2232 maxsize = size - alloc;
2233 if (directory)
2234 free(directory);
2235 directory = strsave(dir);
2236 pid = nid;
2237 m_id = mid;
2238 }
2239## }
2240 if (maxsize == 0)
2241 return(SMS_NO_FILESYS);
2242
2243 /* create filesystem */
2244 if (set_next_object_id("filsys_id", "filesys"))
2245 return(SMS_NO_ID);
2246## repeat append filesys (filsys_id = values.value, phys_id = @pid,
2247## label = @login, type = "NFS", mach_id = @m_id,
2248## name = @directory + "/" + @login,
2249## mount = "/mit/" + @login,
2250## access = "w", comments = "User Locker",
2251## owner = @users_id, owners = @list_id, createflg = 1,
2252## lockertype = "HOMEDIR", modtime = "now",
2253## modby = @who, modwith = @entity)
2254## where values.name = "filsys_id"
2255## inquire_equel(rowcount = "rowcount");
2256 if (rowcount != 1)
2257 return(SMS_INTERNAL);
2258 com_err(whoami, 0, "filesys created on mach %d in %s/%s", m_id,
2259 directory, login);
2260
2261 /* set quota */
2262## repeat retrieve (quota = values.value) where values.name = "def_quota"
2263## inquire_equel(rowcount = "rowcount");
2264 if (rowcount != 1)
2265 return(SMS_NO_QUOTA);
2266## repeat append nfsquota (#users_id = @users_id, filsys_id = values.value,
2267## #quota = @quota, phys_id = @pid, modtime = "now",
2268## modby = @who, modwith = @entity)
2269## where values.name = "filsys_id"
2270## inquire_equel(rowcount = "rowcount");
2271 if (rowcount != 1)
2272 return(SMS_INTERNAL);
2273## repeat replace nfsphys (allocated = nfsphys.allocated + @quota)
2274## where nfsphys.nfsphys_id = filesys.#phys_id and
2275## filesys.filsys_id = values.value and values.name = "filsys_id"
2276## inquire_equel(rowcount = "rowcount");
2277 if (rowcount != 1)
2278 return(SMS_INTERNAL);
2279 com_err(whoami, 0, "quota of %d assigned", quota);
2280
2281## repeat replace tblstats (updates = tblstats.updates + 1, modtime = "now")
2282## where tblstats.table = "users"
2283## repeat replace tblstats (appends = tblstats.appends + 1, modtime = "now")
2284## where tblstats.table = "list" or tblstats.table = "filesys" or
2285## tblstats.table = "nfsquota"
2286 return(SMS_SUCCESS);
2287##}
2288
2289
2290
2291/** set_pop_usage - incr/decr usage count for pop server in serverhosts talbe
2292 **
2293 ** Inputs:
2294 ** id of machine
2295 ** delta (will be +/- 1)
2296 **
2297 ** Description:
2298 ** - incr/decr value field in serverhosts table for pop/mach_id
2299 **
2300 **/
2301
2302static int set_pop_usage(id, count)
2303int id;
2304int count;
2305##{
2306## int mach_id = id;
2307## int n = count;
2308
2309## range of sh is serverhosts
2310## repeat replace sh (value1 = sh.value1 + @n)
2311## where sh.service = "POP" and sh.#mach_id = @mach_id
2312
2313 return(SMS_SUCCESS);
2314##}
2315
2316
2317\f
2318/* Validation Routines */
2319
2320validate_row(q, argv, v)
2321 register struct query *q;
2322 char *argv[];
2323 register struct validate *v;
2324##{
2325## char *rvar;
2326## char *table;
2327## char *name;
2328## char qual[128];
2329## int rowcount;
2330
2331 /* build where clause */
2332 build_qual(v->qual, v->argc, argv, qual);
2333
2334 /* setup ingres variables */
2335 rvar = q->rvar;
2336 table = q->rtable;
2337 name = v->field;
2338
2339 if (log_flags & LOG_VALID)
2340 /* tell the logfile what we're doing */
2341 com_err(whoami, 0, "validating row: %s", qual);
2342
2343 /* look for the record */
2344## range of rvar is table
2345## retrieve (rowcount = count(rvar.name where qual))
2346 if (rowcount == 0) return(SMS_NO_MATCH);
2347 if (rowcount > 1) return(SMS_NOT_UNIQUE);
2348 return(SMS_EXISTS);
2349##}
2350
2351validate_fields(q, argv, vo, n)
2352 struct query *q;
2353 register char *argv[];
2354 register struct valobj *vo;
2355 register int n;
2356{
2357 register int status;
2358
2359 while (--n >= 0) {
2360 switch (vo->type) {
2361 case V_NAME:
2362 if (log_flags & LOG_VALID)
2363 com_err(whoami, 0, "validating %s in %s: %s",
2364 vo->namefield, vo->table, argv[vo->index]);
2365 status = validate_name(argv, vo);
2366 break;
2367
2368 case V_ID:
2369 if (log_flags & LOG_VALID)
2370 com_err(whoami, 0, "validating %s in %s: %s",
2371 vo->idfield, vo->table, argv[vo->index]);
2372 status = validate_id(argv, vo);
2373 break;
2374
2375 case V_DATE:
2376 if (log_flags & LOG_VALID)
2377 com_err(whoami, 0, "validating date: %s", argv[vo->index]);
2378 status = validate_date(argv, vo);
2379 break;
2380
2381 case V_TYPE:
2382 if (log_flags & LOG_VALID)
2383 com_err(whoami, 0, "validating %s type: %s",
2384 vo->table, argv[vo->index]);
2385 status = validate_type(argv, vo);
2386 break;
2387
2388 case V_TYPEDATA:
2389 if (log_flags & LOG_VALID)
2390 com_err(whoami, 0, "validating typed data (%s): %s",
2391 argv[vo->index - 1], argv[vo->index]);
2392 status = validate_typedata(q, argv, vo);
2393 break;
2394
2395 case V_RENAME:
2396 if (log_flags & LOG_VALID)
2397 com_err(whoami, 0, "validating rename %s in %s",
2398 argv[vo->index], vo->table);
2399 status = validate_rename(argv, vo);
2400 break;
2401
2402 case V_CHAR:
2403 if (log_flags & LOG_VALID)
2404 com_err(whoami, 0, "validating chars: %s", argv[vo->index]);
2405 status = validate_chars(argv[vo->index]);
2406 break;
2407
2408 case V_SORT:
2409 status = SMS_EXISTS;
2410 break;
2411
2412 }
2413
2414 if (status != SMS_EXISTS) return(status);
2415 vo++;
2416 }
2417
2418 return(SMS_SUCCESS);
2419}
2420
2421
2422/* validate_chars: verify that there are no illegal characters in
2423 * the string. Legal characters are printing chars other than
2424 * ", *, ?, \, [ and ].
2425 */
2426static int illegalchars[] = {
2427 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* ^@ - ^O */
2428 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* ^P - ^_ */
2429 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, /* SPACE - / */
2430 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, /* 0 - ? */
2431 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* @ - O */
2432 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, /* P - _ */
2433 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* ` - o */
2434 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, /* p - ^? */
2435 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2436 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2437 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2438 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2439 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2440 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2441 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2442 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2443};
2444
2445validate_chars(s)
2446register char *s;
2447{
2448 while (*s)
2449 if (illegalchars[*s++])
2450 return(SMS_BAD_CHAR);
2451 return(SMS_EXISTS);
2452}
2453
2454
2455validate_id(argv, vo)
2456 char *argv[];
2457 register struct valobj *vo;
2458##{
2459## char *name;
2460## char *table;
2461## char *namefield;
2462## char *idfield;
2463## int id;
2464## int rowcount;
2465 register char *c;
2466
2467 name = argv[vo->index];
2468 table = vo->table;
2469 /* minor kludge to upcasify machine names */
2470 if (!strcmp(table, "machine"))
2471 for (c = name; *c; c++) if (islower(*c)) *c = toupper(*c);
2472 namefield = vo->namefield;
2473 idfield = vo->idfield;
2474 if (!strcmp(namefield, "uid")) {
2475## retrieve (id = table.idfield) where table.namefield = int4(name)
2476## inquire_equel (rowcount = "rowcount")
2477 } else {
2478## retrieve (id = table.idfield) where table.namefield = name
2479## inquire_equel (rowcount = "rowcount")
2480 }
2481 if (rowcount != 1) return(vo->error);
2482 *(int *)argv[vo->index] = id;
2483 return(SMS_EXISTS);
2484##}
2485
2486validate_name(argv, vo)
2487 char *argv[];
2488 register struct valobj *vo;
2489##{
2490## char *name;
2491## char *table;
2492## char *namefield;
2493## int rowcount;
2494 register char *c;
2495
2496 name = argv[vo->index];
2497 table = vo->table;
2498 namefield = vo->namefield;
2499 if (!strcmp(table, "servers") && !strcmp(namefield, "name")) {
2500 for (c = name; *c; c++)
2501 if (islower(*c))
2502 *c = toupper(*c);
2503 }
2504## retrieve (rowcount = countu(table.namefield
2505## where table.namefield = name))
2506 return ((rowcount == 1) ? SMS_EXISTS : vo->error);
2507##}
2508
2509validate_date(argv, vo)
2510 char *argv[];
2511 struct valobj *vo;
2512##{
2513## char *idate;
2514## double dd;
2515## int errorno;
2516
2517 idate = argv[vo->index];
2518
2519## retrieve (dd = interval("years", date(idate) - date("today")))
2520## inquire_equel (errorno = "errorno")
2521 if (errorno != 0 || dd > 5.0) return(SMS_DATE);
2522 return(SMS_EXISTS);
2523##}
2524
2525
2526validate_rename(argv, vo)
2527char *argv[];
2528struct valobj *vo;
2529##{
2530## char *name, *table, *namefield, *idfield;
2531## int id;
2532 register char *c;
2533
2534 c = name = argv[vo->index];
2535 while (*c)
2536 if (illegalchars[*c++])
2537 return(SMS_BAD_CHAR);
2538 table = vo->table;
2539 /* minor kludge to upcasify machine names */
2540 if (!strcmp(table, "machine"))
2541 for (c = name; *c; c++) if (islower(*c)) *c = toupper(*c);
2542 namefield = vo->namefield;
2543 idfield = vo->idfield;
2544 id = -1;
2545 if (idfield == 0) {
2546 if (!strcmp(argv[vo->index], argv[vo->index - 1]))
2547 return(SMS_EXISTS);
2548## retrieve (id = any(table.namefield where table.namefield = name))
2549 if (id)
2550 return(vo->error);
2551 else
2552 return(SMS_EXISTS);
2553 }
2554## retrieve (id = table.idfield) where table.namefield = name
2555 if (id == -1 || id == *(int *)argv[vo->index - 1])
2556 return(SMS_EXISTS);
2557 else
2558 return(vo->error);
2559##}
2560
2561
2562validate_type(argv, vo)
2563 char *argv[];
2564 register struct valobj *vo;
2565##{
2566## char *typename;
2567## char *value;
2568## int exists;
2569 register char *c;
2570
2571 typename = vo->table;
2572 c = value = argv[vo->index];
2573 while (*c)
2574 if (illegalchars[*c++])
2575 return(SMS_BAD_CHAR);
2576
2577 /* uppercase type fields */
2578 for (c = value; *c; c++) if (islower(*c)) *c = toupper(*c);
2579
2580## range of a is alias
2581## repeat retrieve (exists = any(a.trans where a.name = @typename and
2582## a.type = "TYPE" and
2583## a.trans = @value))
2584 return (exists ? SMS_EXISTS : vo->error);
2585##}
2586
2587/* validate member or type-specific data field */
2588
2589validate_typedata(q, argv, vo)
2590 register struct query *q;
2591 register char *argv[];
2592 register struct valobj *vo;
2593##{
2594## char *name;
2595## char *field_type;
2596## char data_type[129];
2597## int id;
2598## int rowcount;
2599 char *index();
2600 register char *c;
2601
2602 /* get named object */
2603 name = argv[vo->index];
2604
2605 /* get field type string (known to be at index-1) */
2606 field_type = argv[vo->index-1];
2607
2608 /* get corresponding data type associated with field type name */
2609## repeat retrieve (data_type = alias.trans)
2610## where alias.#name = @field_type and alias.type = "TYPEDATA"
2611## inquire_equel (rowcount = "rowcount")
2612 if (rowcount != 1) return(SMS_TYPE);
2613
2614 /* now retrieve the record id corresponding to the named object */
2615 if (index(data_type, ' '))
2616 *index(data_type, ' ') = 0;
2617 if (!strcmp(data_type, "user")) {
2618 /* USER */
2619## repeat retrieve (id = users.users_id) where users.login = @name
2620## inquire_equel (rowcount = "rowcount")
2621 if (rowcount != 1) return(SMS_USER);
2622
2623 } else if (!strcmp(data_type, "list")) {
2624 /* LIST */
2625## repeat retrieve (id = list.list_id) where list.#name = @name
2626## inquire_equel (rowcount = "rowcount")
2627 if (rowcount != 1) {
2628 /* if idfield is non-zero, then if argv[0] matches the string
2629 * that we're trying to resolve, we should get the value of
2630 * values.[idfield] for the id.
2631 */
2632 if (vo->idfield && !strcmp(argv[0], argv[vo->index])) {
2633 set_next_object_id(q->validate->object_id, q->rtable);
2634 name = vo->idfield;
2635## repeat retrieve (id = values.value) where values.#name = @name
2636## inquire_equel(rowcount = "rowcount")
2637 if (rowcount != 1) return(SMS_LIST);
2638 } else
2639 return(SMS_LIST);
2640 }
2641 } else if (!strcmp(data_type, "machine")) {
2642 /* MACHINE */
2643 for (c = name; *c; c++) if (islower(*c)) *c = toupper(*c);
2644## repeat retrieve (id = machine.mach_id) where machine.#name = @name
2645## inquire_equel (rowcount = "rowcount")
2646 if (rowcount != 1) return(SMS_MACHINE);
2647
2648 } else if (!strcmp(data_type, "string")) {
2649 /* STRING */
2650## range of s is strings
2651## repeat retrieve (id = s.string_id) where s.string = @name
2652## inquire_equel (rowcount = "rowcount")
2653 if (rowcount == 0) {
2654 if (q->type != APPEND) return(SMS_STRING);
2655## range of v is values
2656## retrieve (id = v.value) where v.#name = "strings_id"
2657 id++;
2658## replace v (value = id) where v.#name = "strings_id"
2659## append to strings (string_id = id, string = name)
2660 }
2661 } else if (!strcmp(data_type, "none")) {
2662 id = 0;
2663 } else {
2664 return(SMS_TYPE);
2665 }
2666
2667 /* now set value in argv */
2668 *(int *)argv[vo->index] = id;
2669
2670 return (SMS_EXISTS);
2671##}
2672
2673
2674/* This looks up a login name and returns the SMS internal ID. It is used
2675 * by authenticate to put the users_id in the client structure.
2676 */
2677
2678int get_users_id(name)
2679char *name;
2680##{
2681## int id, rowcount;
2682## char *login;
2683
2684 login = name;
2685
2686## range of u is users
2687## repeat retrieve (id = u.#users_id) where u.#login = @login
2688## inquire_equel (rowcount = "rowcount")
2689
2690 if (rowcount == 1)
2691 return(id);
2692 else
2693 return(0);
2694##}
2695
2696
2697/* Check the database at startup time. For now this just resets the
2698 * inprogress flags that the DCM uses.
2699 */
2700
2701sanity_check_database()
2702##{
2703##}
This page took 0.070462 seconds and 5 git commands to generate.