]> andersk Git - moira.git/blame_incremental - server/qsupport.qc
added copyright message
[moira.git] / server / qsupport.qc
... / ...
CommitLineData
1/*
2 * $Source$
3 * $Author$
4 * $Header$
5 *
6 * Copyright (C) 1987 by the Massachusetts Institute of Technology
7 * For copying and distribution information, please see the file
8 * <mit-copyright.h>.
9 *
10 */
11
12#ifndef lint
13static char *rcsid_qsupport_qc = "$Header$";
14#endif lint
15
16#include <mit-copyright.h>
17#include "query.h"
18#include "sms_server.h"
19#include <ctype.h>
20
21
22extern char *whoami, *strsave();
23
24
25/* Specialized Access Routines */
26
27/* access_user - verify that client name equals specified login name
28 *
29 * - since field validation routines are called first, a users_id is
30 * now in argv[0] instead of the login name.
31 */
32
33access_user(q, argv, cl)
34 struct query *q;
35 char *argv[];
36 client *cl;
37{
38 if (cl->users_id != *(int *)argv[0])
39 return(SMS_PERM);
40 else
41 return(SMS_SUCCESS);
42}
43
44
45
46/* access_login - verify that client name equals specified login name
47 *
48 * argv[0...n] contain search info. q->
49 */
50
51access_login(q, argv, cl)
52 struct query *q;
53 char *argv[];
54 client *cl;
55##{
56## int rowcount, id;
57## char qual[256];
58
59 build_qual(q->qual, q->argc, argv, qual);
60## retrieve (id = u.users_id) where qual
61## inquire_equel(rowcount = "rowcount")
62 if (rowcount != 1 || id != cl->users_id)
63 return(SMS_PERM);
64 else
65 return(SMS_SUCCESS);
66##}
67
68
69
70/* access_list - check access for most list operations
71 *
72 * Inputs: argv[0] - list_id
73 * q - query name
74 * argv[2] - member ID (only for queries "amtl" and "dmfl")
75 * argv[7] - group IID (only for query "ulis")
76 * cl - client name
77 *
78 * - check that client is a member of the access control list
79 * - OR, if the query is add_member_to_list or delete_member_from_list
80 * and the list is public, allow access if client = member
81 */
82
83access_list(q, argv, cl)
84 struct query *q;
85 char *argv[];
86 client *cl;
87##{
88## int list_id, acl_id, flags, rowcount, gid;
89## char acl_type[9];
90 char *client_type;
91 int client_id, status;
92
93 list_id = *(int *)argv[0];
94## repeat retrieve (acl_id = list.#acl_id, acl_type = list.#acl_type,
95## gid = list.#gid, flags = list.#public)
96## where list.#list_id = @list_id
97## inquire_equel(rowcount = "rowcount")
98 if (rowcount != 1)
99 return(SMS_INTERNAL);
100
101 /* parse client structure */
102 if ((status = get_client(cl, &client_type, &client_id)) != SMS_SUCCESS)
103 return(status);
104
105 /* if amtl or dmfl and list is public allow client to add or delete self */
106 if ((!strcmp("amtl", q->shortname) || !strcmp("dmfl", q->shortname)) &&
107 (flags && !strcmp("USER", argv[1]))) {
108 if (*(int *)argv[2] == client_id) return(SMS_SUCCESS);
109 /* if update_list, don't allow them to change the GID */
110 } else if (!strcmp("ulis", q->shortname)) {
111 if ((!strcmp(argv[7], UNIQUE_GID) && (gid != -1)) ||
112 (strcmp(argv[7], UNIQUE_GID) && (gid != atoi(argv[7]))))
113 return(SMS_PERM);
114 }
115
116 /* check for client in access control list */
117 status = find_member(acl_type, acl_id, client_type, client_id, 0);
118 if (!status) return(SMS_PERM);
119
120 return(SMS_SUCCESS);
121##}
122
123
124/* access_visible_list - allow access to list only if it is not hidden,
125 * or if the client is on the ACL
126 *
127 * Inputs: argv[0] - list_id
128 * cl - client identifier
129 */
130
131access_visible_list(q, argv, cl)
132 struct query *q;
133 char *argv[];
134 client *cl;
135##{
136## int list_id, acl_id, flags, rowcount;
137## char acl_type[9];
138 char *client_type;
139 int client_id, status;
140
141 list_id = *(int *)argv[0];
142## repeat retrieve (flags = list.hidden, acl_id = list.#acl_id,
143## acl_type = list.#acl_type) where list.#list_id = @list_id
144## inquire_equel(rowcount = "rowcount")
145 if (rowcount != 1)
146 return(SMS_INTERNAL);
147 if (!flags)
148 return(SMS_SUCCESS);
149
150 /* parse client structure */
151 if ((status = get_client(cl, &client_type, &client_id)) != SMS_SUCCESS)
152 return(status);
153
154 /* check for client in access control list */
155 status = find_member(acl_type, acl_id, client_type, client_id, 0);
156 if (!status)
157 return(SMS_PERM);
158
159 return(SMS_SUCCESS);
160##}
161
162
163/* access_vis_list_by_name - allow access to list only if it is not hidden,
164 * or if the client is on the ACL
165 *
166 * Inputs: argv[0] - list name
167 * cl - client identifier
168 */
169
170access_vis_list_by_name(q, argv, cl)
171 struct query *q;
172 char *argv[];
173 client *cl;
174##{
175## int acl_id, flags, rowcount;
176## char acl_type[9], *listname;
177 char *client_type;
178 int client_id, status;
179
180 listname = argv[0];
181## repeat retrieve (flags = list.hidden, acl_id = list.#acl_id,
182## acl_type = list.#acl_type) where list.#name = @listname
183## inquire_equel(rowcount = "rowcount");
184 if (rowcount > 1)
185 return(SMS_WILDCARD);
186 if (rowcount == 0)
187 return(SMS_NO_MATCH);
188 if (!flags)
189 return(SMS_SUCCESS);
190
191 /* parse client structure */
192 if ((status = get_client(cl, &client_type, &client_id)) != SMS_SUCCESS)
193 return(status);
194
195 /* check for client in access control list */
196 status = find_member(acl_type, acl_id, client_type, client_id, 0);
197 if (!status)
198 return(SMS_PERM);
199
200 return(SMS_SUCCESS);
201##}
202
203
204/* access_member - allow user to access member of type "USER" and name matches
205 * username, or to access member of type "LIST" and list is one that user is
206 * on the acl of, or the list is visible.
207 */
208
209access_member(q, argv, cl)
210 struct query *q;
211 char *argv[];
212 client *cl;
213{
214 if (!strcmp(argv[0], "LIST") || !strcmp(argv[0], "RLIST"))
215 return(access_visible_list(q, &argv[1], cl));
216
217 if (!strcmp(argv[0], "USER") || !strcmp(argv[0], "RUSER")) {
218 if (cl->users_id == *(int *)argv[1])
219 return(SMS_SUCCESS);
220 }
221
222 return(SMS_PERM);
223}
224
225
226/* access_qgli - special access routine for Qualified_get_lists. Allows
227 * access iff argv[0] == "TRUE" and argv[2] == "FALSE".
228 */
229
230access_qgli(q, argv, cl)
231 struct query *q;
232 char *argv[];
233 client *cl;
234{
235 if (!strcmp(argv[0], "TRUE") && !strcmp(argv[2], "FALSE"))
236 return(SMS_SUCCESS);
237 return(SMS_PERM);
238}
239
240
241/* access_service - allow access if user is on ACL of service. Don't
242 * allow access if a wildcard is used.
243 */
244
245access_service(q, argv, cl)
246 struct query *q;
247 char *argv[];
248 client *cl;
249##{
250## int acl_id, rowcount;
251## char *name, acl_type[9];
252 int client_id, status;
253 char *client_type;
254
255 name = argv[0];
256## repeat retrieve (acl_id = servers.#acl_id, acl_type = servers.#acl_type)
257## where servers.#name = uppercase(@name)
258## inquire_equel(rowcount = "rowcount")
259 if (rowcount > 1)
260 return(SMS_PERM);
261
262 /* parse client structure */
263 if ((status = get_client(cl, &client_type, &client_id)) != SMS_SUCCESS)
264 return(status);
265
266 /* check for client in access control list */
267 status = find_member(acl_type, acl_id, client_type, client_id, 0);
268 if (!status) return(SMS_PERM);
269
270 return(SMS_SUCCESS);
271##}
272
273
274
275/* access_filesys - verify that client is owner or on owners list of filesystem
276 * named by argv[0]
277 */
278
279access_filesys(q, argv, cl)
280 struct query *q;
281 char *argv[];
282 client *cl;
283##{
284## int rowcount, users_id, list_id;
285## char *name;
286 int status, client_id;
287 char *client_type;
288
289 name = argv[0];
290## repeat retrieve (users_id = filesys.owner, list_id = filesys.owners)
291## where filesys.label = @name
292## inquire_equel(rowcount = "rowcount")
293
294 if (rowcount != 1)
295 return(SMS_PERM);
296 if (users_id == cl->users_id)
297 return(SMS_SUCCESS);
298 if ((status = get_client(cl, &client_type, &client_id)) != SMS_SUCCESS)
299 return(status);
300 status = find_member("LIST", list_id, client_type, client_id, 0);
301 if (status)
302 return(SMS_SUCCESS);
303 return(SMS_PERM);
304##}
305
306
307\f
308/* Setup Routines */
309
310/* Setup routine for add_user
311 *
312 * Inputs: argv[0] - login
313 * argv[1] - uid
314 *
315 * Description:
316 *
317 * - if argv[1] == UNIQUE_UID then set argv[1] = next(uid)
318 * - if argv[0] == UNIQUE_LOGIN then set argv[0] = "#<uid>"
319 */
320
321setup_ausr(q, argv, cl)
322 struct query *q;
323 register char *argv[];
324 client *cl;
325##{
326## int nuid, rowcount;
327
328 if (!strcmp(argv[1], UNIQUE_UID) || atoi(argv[1]) == -1) {
329 if (set_next_object_id("uid", "users"))
330 return(SMS_INGRES_ERR);
331## repeat retrieve (nuid = values.value) where values.name = "uid"
332## inquire_equel(rowcount = "rowcount")
333 if (rowcount != 1)
334 return(SMS_INTERNAL);
335 sprintf(argv[1], "%d", nuid);
336 }
337
338 if (!strcmp(argv[0], UNIQUE_LOGIN) || atoi(argv[1]) == -1) {
339 sprintf(argv[0], "#%s", argv[1]);
340 }
341
342 return(SMS_SUCCESS);
343##}
344
345
346/* setup_dusr - verify that the user is no longer being referenced
347 * and may safely be deleted.
348 */
349
350int setup_dusr(q, argv)
351 struct query *q;
352 char **argv;
353##{
354## int flag, id;
355
356 id = *(int *)argv[0];
357
358 /* For now, only allow users to be deleted if their status is 0 */
359## repeat retrieve (flag = u.status) where u.users_id = @id
360 if (flag != 0)
361 return(SMS_IN_USE);
362
363## repeat delete nfsquota where nfsquota.users_id = @id
364## repeat retrieve (flag = any(members.member_id where members.member_id=@id
365## and members.member_type = "USER"))
366 if (flag)
367 return(SMS_IN_USE);
368## repeat retrieve (flag = any(filesys.label where filesys.owner=@id))
369 if (flag)
370 return(SMS_IN_USE);
371## repeat retrieve (flag = any(list.name where list.acl_id=@id and
372## list.acl_type = "USER"))
373 if (flag)
374 return(SMS_IN_USE);
375## repeat retrieve (flag = any(servers.name where servers.acl_id=@id and
376## servers.acl_type = "USER"))
377 if (flag)
378 return(SMS_IN_USE);
379## repeat retrieve (flag=any(hostaccess.acl_id where hostaccess.acl_id=@id and
380## hostaccess.acl_type = "USER"))
381 if (flag)
382 return(SMS_IN_USE);
383 else
384 return(SMS_SUCCESS);
385##}
386
387
388/* setup_spop: verify that there is already a valid POP machine_id in the
389 * pop_id field. Also take care of keeping track of the post office usage.
390 */
391int setup_spop(q, argv)
392struct query *q;
393char **argv;
394##{
395## int id, mid, flag;
396## char type[9];
397
398 id = *(int *)argv[0];
399## repeat retrieve (type = u.potype, mid = u.pop_id,
400## flag = any(machine.name where machine.mach_id = u.pop_id
401## and u.pop_id != 0 and u.users_id = @id))
402## where u.users_id = @id
403 if (!flag)
404 return(SMS_MACHINE);
405 if (strcmp(strtrim(type), "POP"))
406 set_pop_usage(mid, 1);
407 return(SMS_SUCCESS);
408##}
409
410
411/* setup_dpob: Take care of keeping track of the post office usage.
412 */
413int setup_dpob(q, argv)
414struct query *q;
415char **argv;
416##{
417## int id, user;
418## char type[9];
419
420 user = *(int *)argv[0];
421## repeat retrieve (type = u.potype, id = u.pop_id)
422## where u.users_id = @user
423
424 if (!strcmp(strtrim(type), "POP"))
425 set_pop_usage(id, -1);
426 return(SMS_SUCCESS);
427##}
428
429
430/* setup_dmac - verify that the machine is no longer being referenced
431 * and may safely be deleted.
432 */
433
434int setup_dmac(q, argv)
435 struct query *q;
436 char **argv;
437##{
438## int flag, id;
439
440 id = *(int *)argv[0];
441## repeat retrieve (flag = any(users.login where users.potype = "POP"
442## and users.pop_id=@id))
443 if (flag)
444 return(SMS_IN_USE);
445## repeat retrieve (flag = any(serverhosts.mach_id
446## where serverhosts.mach_id=@id))
447 if (flag)
448 return(SMS_IN_USE);
449## repeat retrieve (flag = any(nfsphys.mach_id where nfsphys.mach_id=@id))
450 if (flag)
451 return(SMS_IN_USE);
452## repeat retrieve (flag = any(hostaccess.mach_id where hostaccess.mach_id=@id))
453 if (flag)
454 return(SMS_IN_USE);
455## repeat retrieve (flag = any(printcap.mach_id where printcap.mach_id=@id))
456 if (flag)
457 return(SMS_IN_USE);
458
459## repeat delete mcmap where mcmap.mach_id = @id
460 return(SMS_SUCCESS);
461##}
462
463
464/* setup_dclu - verify that the cluster is no longer being referenced
465 * and may safely be deleted.
466 */
467
468int setup_dclu(q, argv)
469 struct query *q;
470 char **argv;
471##{
472## int flag, id;
473
474 id = *(int *)argv[0];
475## repeat retrieve (flag = any(mcmap.mach_id where mcmap.clu_id=@id))
476 if (flag)
477 return(SMS_IN_USE);
478## repeat retrieve (flag = any(svc.clu_id where svc.clu_id=@id))
479 if (flag)
480 return(SMS_IN_USE);
481 else
482 return(SMS_SUCCESS);
483##}
484
485
486/* setup_alis - if argv[5] is non-zero and argv[6] is UNIQUE_ID, then allocate
487 * a new gid and put it in argv[6]. Otherwise if argv[6] is UNIQUE_ID but
488 * argv[5] is not, then remember that UNIQUE_ID is being stored by putting
489 * a -1 there. Remember that this is also used for ulis, with the indexes
490 * at 6 & 7.
491 */
492
493int setup_alis(q, argv)
494struct query *q;
495char **argv;
496##{
497## int ngid;
498 char *malloc();
499 int idx;
500
501 if (!strcmp(q->shortname, "alis"))
502 idx = 6;
503 else if (!strcmp(q->shortname, "ulis"))
504 idx = 7;
505
506 if (!strcmp(argv[idx], UNIQUE_GID) || atoi(argv[idx]) == -1) {
507 if (atoi(argv[idx - 1])) {
508 if (set_next_object_id("gid", "list"))
509 return(SMS_INGRES_ERR);
510## repeat retrieve (ngid = values.value) where values.name = "gid"
511 sprintf(argv[idx], "%d", ngid);
512 } else {
513 strcpy(argv[idx], "-1");
514 }
515 }
516
517 return(SMS_SUCCESS);
518##}
519
520
521/* setup_dlist - verify that the list is no longer being referenced
522 * and may safely be deleted.
523 */
524
525int setup_dlis(q, argv)
526 struct query *q;
527 char **argv;
528##{
529## int flag, id;
530
531 id = *(int *)argv[0];
532## repeat retrieve (flag = any(members.member_id where members.member_id=@id
533## and members.member_type = "LIST"))
534 if (flag)
535 return(SMS_IN_USE);
536## repeat retrieve (flag = any(members.member_id where members.list_id=@id))
537 if (flag)
538 return(SMS_IN_USE);
539## repeat retrieve (flag = any(filesys.label where filesys.owners=@id))
540 if (flag)
541 return(SMS_IN_USE);
542## repeat retrieve (flag = any(capacls.tag where capacls.list_id=@id))
543 if (flag)
544 return(SMS_IN_USE);
545## repeat retrieve (flag = any(list.name where list.acl_id=@id and
546## list.acl_type = "LIST" and list.list_id != @id))
547 if (flag)
548 return(SMS_IN_USE);
549## repeat retrieve (flag = any(servers.name where servers.acl_id=@id and
550## servers.acl_type = "LIST"))
551 if (flag)
552 return(SMS_IN_USE);
553## repeat retrieve (flag=any(hostaccess.acl_id where hostaccess.acl_id=@id and
554## hostaccess.acl_type = "LIST"))
555 if (flag)
556 return(SMS_IN_USE);
557## repeat retrieve (flag = any(zephyr.class
558## where zephyr.xmt_type = "LIST" and zephyr.xmt_id = @id or
559## zephyr.sub_type = "LIST" and zephyr.sub_id = @id or
560## zephyr.iws_type = "LIST" and zephyr.iws_id = @id or
561## zephyr.iui_type = "LIST" and zephyr.iui_id = @id))
562 if (flag)
563 return(SMS_IN_USE);
564 else
565 return(SMS_SUCCESS);
566##}
567
568
569/* setup_dsin - verify that the service is no longer being referenced
570 * and may safely be deleted.
571 */
572
573int setup_dsin(q, argv)
574 struct query *q;
575 char **argv;
576##{
577## int flag;
578## char *name;
579
580 name = argv[0];
581## repeat retrieve (flag = any(serverhosts.service
582## where serverhosts.service=uppercase(@name)))
583 if (flag)
584 return(SMS_IN_USE);
585## repeat retrieve (flag = servers.inprogress) where servers.#name = @name
586 if (flag)
587 return(SMS_IN_USE);
588 else
589 return(SMS_SUCCESS);
590##}
591
592
593/* setup_dshi - verify that the service-host is no longer being referenced
594 * and may safely be deleted.
595 */
596
597int setup_dshi(q, argv)
598 struct query *q;
599 char **argv;
600##{
601## int flag, id;
602## char *name;
603
604 name = argv[0];
605 id = *(int *)argv[1];
606## repeat retrieve (flag=serverhosts.inprogress)
607## where serverhosts.service=uppercase(@name) and serverhosts.mach_id=@id
608 if (flag)
609 return(SMS_IN_USE);
610 else
611 return(SMS_SUCCESS);
612##}
613
614
615/**
616 ** setup_add_filesys - verify existance of referenced file systems
617 **
618 ** Inputs: Add
619 ** argv[1] - type
620 ** argv[2] - mach_id
621 ** argv[3] - name
622 ** argv[5] - access
623 **
624 ** Description:
625 ** - for type = RVD:
626 ** * allow anything
627 ** - for type = NFS:
628 ** * extract directory prefix from name
629 ** * verify mach_id/dir in nfsphys
630 ** * verify access in {r, w, R, W}
631 **
632 ** Side effect: sets variable var_phys_id to the ID of the physical
633 ** filesystem (nfsphys_id for NFS, 0 for RVD)
634 **
635 ** Errors:
636 ** SMS_NFS - specified directory not exported
637 ** SMS_FILESYS_ACCESS - invalid filesys access
638 **
639 **/
640
641##static int var_phys_id;
642
643setup_afil(q, argv)
644 struct query *q;
645 char *argv[];
646{
647 char *type;
648 int mach_id;
649 char *name;
650 char *access;
651
652 type = argv[1];
653 mach_id = *(int *)argv[2];
654 name = argv[3];
655 access = argv[5];
656 var_phys_id = 0;
657
658 if (!strcmp(type, "NFS"))
659 return (check_nfs(mach_id, name, access));
660 else
661 return(SMS_SUCCESS);
662}
663
664
665/* Verify the arguments, depending on the FStype. Also, if this is an
666 * NFS filesystem, then update any quotas for that filesystem to reflect
667 * the new phys_id.
668 */
669
670setup_ufil(q, argv)
671 struct query *q;
672 char *argv[];
673##{
674 int mach_id, status;
675 char *type, *name, *access;
676## int fid;
677
678 type = argv[2];
679 mach_id = *(int *)argv[3];
680 name = argv[4];
681 access = argv[6];
682 var_phys_id = 0;
683
684 if (!strcmp(type, "NFS")) {
685 status = check_nfs(mach_id, name, access);
686 fid = *(int *)argv[0];
687## replace nfsquota (phys_id = var_phys_id) where nfsquota.filsys_id = fid
688 return(status);
689 } else
690 return(SMS_SUCCESS);
691##}
692
693
694/* Find the NFS physical partition that the named directory is on.
695 * This is done by comparing the dir against the mount point of the
696 * partition. To make sure we get the correct match when there is
697 * more than one, we sort the query in reverse order by dir name.
698 */
699
700##check_nfs(mach_id, name, access)
701## int mach_id;
702 char *name;
703 char *access;
704##{
705## char dir[32];
706 char caccess;
707 register int status;
708 register char *cp1;
709 register char *cp2;
710
711 caccess = (isupper(*access)) ? tolower(*access) : *access;
712 if (caccess != 'r' && caccess != 'w') return(SMS_FILESYS_ACCESS);
713
714 status = SMS_NFS;
715## range of np is nfsphys
716## repeat retrieve (var_phys_id = np.#nfsphys_id, dir = trim(np.#dir))
717## where np.#mach_id = @mach_id sort by #dir:d {
718 cp1 = name;
719 cp2 = dir;
720 while (*cp2) {
721 if (*cp1++ != *cp2) break;
722 cp2++;
723 }
724 if (*cp2 == 0) {
725 status = SMS_SUCCESS;
726## endretrieve
727 }
728## }
729
730 return(status);
731##}
732
733
734/* setup_dfil: free any quota records associated with a filesystem
735 * when it is deleted.
736 */
737
738setup_dfil(q, argv, cl)
739 struct query *q;
740 char **argv;
741 client *cl;
742##{
743## int id;
744
745 id = *(int *)argv[0];
746## range of q is nfsquota
747## range of fs is filesys
748## range of n is nfsphys
749## repeat replace n (allocated=n.allocated-sum(q.quota where q.filsys_id=@id))
750## where n.nfsphys_id = fs.phys_id and fs.filsys_id = @id
751
752## repeat delete q where q.filsys_id = @id
753 return(SMS_SUCCESS);
754##}
755
756
757/* setup_dnfp: check to see that the nfs physical partition does not have
758 * any filesystems assigned to it before allowing it to be deleted.
759 */
760
761setup_dnfp(q, argv, cl)
762 struct query *q;
763 char **argv;
764 client *cl;
765##{
766## int id, exists;
767
768 id = *(int *)argv[0];
769## repeat retrieve (exists = any(filesys.label where filesys.phys_id = @id))
770 if (exists)
771 return(SMS_IN_USE);
772 return(SMS_SUCCESS);
773##}
774
775
776/* setup_dnfq: Remove allocation from nfsphys before deleting quota.
777 * argv[0] = filsys_id
778 * argv[1] = users_id
779 */
780
781setup_dnfq(q, argv, cl)
782 struct query *q;
783 char **argv;
784 client *cl;
785##{
786## int quota, fs, user;
787
788 fs = *(int *)argv[0];
789 user = *(int *)argv[1];
790
791## range of q is nfsquota
792## repeat retrieve (quota = q.#quota) where q.users_id = @user and
793## q.filsys_id = @fs
794## repeat replace nfsphys (allocated = nfsphys.allocated - @quota)
795## where nfsphys.nfsphys_id = filesys.#phys_id and filesys.filsys_id = @fs
796 return(SMS_SUCCESS);
797##}
798
799
800\f
801/* FOLLOWUP ROUTINES */
802
803/* generic set_modtime routine. This takes the table name from the query,
804 * and will update the modtime, modby, and modwho fields in the entry in
805 * the table whose name field matches argv[0].
806 */
807
808set_modtime(q, argv, cl)
809 struct query *q;
810 char *argv[];
811 client *cl;
812##{
813## char *name, *entity, *table;
814## int who;
815
816 entity = cl->entity;
817 who = cl->users_id;
818 table = q->rtable;
819 name = argv[0];
820
821## replace table (modtime = "now", modby = who, modwith = entity)
822## where table.#name = name
823 return(SMS_SUCCESS);
824##}
825
826/* generic set_modtime_by_id routine. This takes the table name from
827 * the query, and the id name from the validate record,
828 * and will update the modtime, modby, and modwho fields in the entry in
829 * the table whose id matches argv[0].
830 */
831
832set_modtime_by_id(q, argv, cl)
833 struct query *q;
834 char **argv;
835 client *cl;
836##{
837## char *entity, *table, *id_name;
838## int who, id;
839
840 entity = cl->entity;
841 who = cl->users_id;
842 table = q->rtable;
843 id_name = q->validate->object_id;
844
845 id = *(int *)argv[0];
846## replace table (modtime = "now", modby = who, modwith = entity)
847## where table.id_name = id
848 return(SMS_SUCCESS);
849##}
850
851
852/* Sets the finger modtime on a user record. The users_id will be in argv[0].
853 */
854
855set_finger_modtime(q, argv, cl)
856 struct query *q;
857 char *argv[];
858 client *cl;
859##{
860## int users_id, who;
861## char *entity;
862
863 entity = cl->entity;
864 who = cl->users_id;
865 users_id = *(int *)argv[0];
866
867## repeat replace u (fmodtime = "now", fmodby = @who, fmodwith = @entity)
868## where u.#users_id = @users_id
869 return(SMS_SUCCESS);
870##}
871
872
873/* Sets the pobox modtime on a user record. The users_id will be in argv[0].
874 */
875
876set_pobox_modtime(q, argv, cl)
877 struct query *q;
878 char **argv;
879 client *cl;
880##{
881## int users_id, who;
882## char *entity;
883
884 entity = cl->entity;
885 who = cl->users_id;
886 users_id = *(int *)argv[0];
887
888## repeat replace users (pmodtime = "now", pmodby = @who, pmodwith = @entity)
889## where users.#users_id = @users_id
890 return(SMS_SUCCESS);
891##}
892
893
894/* Sets the modtime on a machine record. The machine name is in argv[0].
895 * This routine is different from the generic set_modtime in that the
896 * name is uppercased first.
897 */
898
899set_mach_modtime(q, argv, cl)
900 struct query *q;
901 char **argv;
902 client *cl;
903##{
904## char *host, *entity;
905## int who;
906
907 entity = cl->entity;
908 who = cl->users_id;
909
910 host = argv[0];
911## repeat replace m (modtime = "now", modby = @who, modwith = @entity)
912## where m.name = uppercase(@host)
913 return(SMS_SUCCESS);
914##}
915
916
917/* Sets the modtime on the machine whose mach_id is in argv[0]. This routine
918 * is necessary for add_machine_to_cluster becuase the table that query
919 * operates on is "mcm", not "machine".
920 */
921
922set_mach_modtime_by_id(q, argv, cl)
923 struct query *q;
924 char **argv;
925 client *cl;
926##{
927## char *entity;
928## int who, id;
929
930 entity = cl->entity;
931 who = cl->users_id;
932
933 id = *(int *)argv[0];
934## range of m is machine
935## repeat replace m (modtime = "now", modby = @who, modwith = @entity)
936## where m.mach_id = @id
937 return(SMS_SUCCESS);
938##}
939
940
941/* Sets the modtime on the cluster whose mach_id is in argv[0]. This routine
942 * is necessary for add_cluster_data and delete_cluster_data becuase the
943 * table that query operates on is "svc", not "cluster".
944 */
945
946set_cluster_modtime_by_id(q, argv, cl)
947 struct query *q;
948 char **argv;
949 client *cl;
950##{
951## char *entity;
952## int who, id;
953
954 entity = cl->entity;
955 who = cl->users_id;
956
957 id = *(int *)argv[0];
958## range of c is cluster
959## repeat replace c (modtime = "now", modby = @who, modwith = @entity)
960## where c.clu_id = @id
961 return(SMS_SUCCESS);
962##}
963
964
965/* sets the modtime on the serverhost where the service name is in argv[0]
966 * and the mach_id is in argv[1].
967 */
968
969set_serverhost_modtime(q, argv, cl)
970 struct query *q;
971 char **argv;
972 client *cl;
973##{
974## char *entity, *serv;
975## int who, id;
976
977 entity = cl->entity;
978 who = cl->users_id;
979
980 serv = argv[0];
981 id = *(int *)argv[1];
982## repeat replace sh (modtime = "now", modby = @who, modwith = @entity)
983## where sh.service = uppercase(@serv) and sh.mach_id = @id
984 return(SMS_SUCCESS);
985##}
986
987
988/* sets the modtime on the nfsphys where the mach_id is in argv[0] and the
989 * directory name is in argv[1].
990 */
991
992set_nfsphys_modtime(q, argv, cl)
993 struct query *q;
994 char **argv;
995 client *cl;
996##{
997## char *entity, *dir;
998## int who, id;
999
1000 entity = cl->entity;
1001 who = cl->users_id;
1002
1003 id = *(int *)argv[0];
1004 dir = argv[1];
1005## repeat replace np (modtime = "now", modby = @who, modwith = @entity)
1006## where np.#dir = @dir and np.mach_id = @id
1007 return(SMS_SUCCESS);
1008##}
1009
1010
1011/* sets the modtime on a filesystem, where argv[0] contains the filesys
1012 * label.
1013 */
1014
1015set_filesys_modtime(q, argv, cl)
1016 struct query *q;
1017 char *argv[];
1018 client *cl;
1019##{
1020## char *label, *entity;
1021## int who;
1022
1023 entity = cl->entity;
1024 who = cl->users_id;
1025
1026 label = argv[0];
1027 if (!strcmp(q->shortname, "ufil"))
1028 label = argv[1];
1029
1030## repeat replace fs (modtime = "now", modby = @who, modwith = @entity,
1031## #phys_id = @var_phys_id) where fs.#label = @label
1032 return(SMS_SUCCESS);
1033##}
1034
1035
1036/* sets the modtime on a zephyr class, where argv[0] contains the class
1037 * name.
1038 */
1039
1040set_zephyr_modtime(q, argv, cl)
1041 struct query *q;
1042 char *argv[];
1043 client *cl;
1044##{
1045## char *class, *entity;
1046## int who;
1047
1048 entity = cl->entity;
1049 who = cl->users_id;
1050
1051 class = argv[0];
1052
1053## repeat replace z (modtime = "now", modby = @who, modwith = @entity)
1054## where z.#class = @class
1055 return(SMS_SUCCESS);
1056##}
1057
1058
1059/* fixes the modby field. This will be the second to last thing in the
1060 * argv, the argv length is determined from the query structure. It is
1061 * passed as a pointer to an integer. This will either turn it into a
1062 * username, or # + the users_id.
1063 */
1064followup_fix_modby(q, sq, v, action, actarg, cl)
1065 struct query *q;
1066 register struct save_queue *sq;
1067 struct validate *v;
1068 register int (*action)();
1069 register int actarg;
1070 client *cl;
1071##{
1072 register int i, j;
1073 char **argv, *malloc();
1074## int id, rowcount;
1075## char *name;
1076
1077 i = q->vcnt - 2;
1078 while (sq_get_data(sq, &argv)) {
1079 id = atoi(argv[i]);
1080 free(argv[i]);
1081 argv[i] = malloc(9);
1082 name = argv[i];
1083## repeat retrieve (name = users.login) where users.users_id = @id
1084## inquire_equel(rowcount = "rowcount")
1085 if (rowcount != 1) {
1086 sprintf(argv[i], "#%d", id);
1087 }
1088 (*action)(q->vcnt, argv, actarg);
1089 for (j = 0; j < q->vcnt; j++)
1090 free(argv[j]);
1091 free(argv);
1092 }
1093 sq_destroy(sq);
1094 return(SMS_SUCCESS);
1095##}
1096
1097
1098/**
1099 ** followup_ausr - add finger and pobox entries, set_user_modtime
1100 **
1101 ** Inputs:
1102 ** argv[0] - login (add_user)
1103 ** argv[3] - last name
1104 ** argv[4] - first name
1105 ** argv[5] - middle name
1106 **
1107 **/
1108
1109followup_ausr(q, argv, cl)
1110 struct query *q;
1111 char *argv[];
1112 client *cl;
1113##{
1114## int who;
1115## char *login, *entity;
1116## char fullname[129];
1117
1118 login = argv[0];
1119 who = cl->users_id;
1120 entity = cl->entity;
1121
1122 /* build fullname */
1123 if (strlen(argv[4]) && strlen(argv[5]))
1124 sprintf(fullname, "%s %s %s", argv[4], argv[5], argv[3]);
1125 else if (strlen(argv[4]))
1126 sprintf(fullname, "%s %s", argv[4], argv[3]);
1127 else
1128 sprintf(fullname, "%s", argv[3]);
1129
1130 /* create finger entry, pobox & set modtime on user */
1131## repeat replace u (modtime = "now", modby=@who, modwith=@entity,
1132## #fullname=@fullname, mit_affil = u.mit_year,
1133## fmodtime="now", fmodby=@who, fmodwith=@entity,
1134## potype="NONE", pmodtime="now", pmodby=@who, pmodwith=@entity)
1135## where u.#login = @login
1136
1137 return(SMS_SUCCESS);
1138##}
1139
1140
1141/* followup_gpob: fixes argv[2] based on the IDs currently there and the
1142 * type in argv[1]. Then completes the upcall to the user.
1143 *
1144 * argv[2] is of the form "123:234" where the first integer is the machine
1145 * ID if it is a pop box, and the second is the string ID if it is an SMTP
1146 * box. argv[1] should be "POP", "SMTP", or "NONE". Boxes of type NONE
1147 * are skipped.
1148 */
1149
1150followup_gpob(q, sq, v, action, actarg, cl)
1151 register struct query *q;
1152 register struct save_queue *sq;
1153 register struct validate *v;
1154 register int (*action)();
1155 int actarg;
1156 client *cl;
1157##{
1158 char **argv, *index();
1159 char *ptype, *p;
1160## char box[129], *name;
1161## int mid, sid, rowcount;
1162
1163 /* for each row */
1164 while (sq_get_data(sq, &argv)) {
1165 sms_trim_args(2, argv);
1166 ptype = argv[1];
1167 p = index(argv[2], ':');
1168 *p++ = 0;
1169 mid = atoi(argv[2]);
1170 sid = atoi(p);
1171 free(argv[2]);
1172
1173 if (!strcmp(ptype, "POP")) {
1174## repeat retrieve (box=machine.#name) where machine.mach_id=@mid
1175## inquire_equel(rowcount = "rowcount")
1176 if (rowcount != 1)
1177 return(SMS_MACHINE);
1178 } else if (!strcmp(ptype, "SMTP")) {
1179## repeat retrieve (box=strings.string) where strings.string_id=@sid
1180## inquire_equel(rowcount = "rowcount")
1181 if (rowcount != 1)
1182 return(SMS_STRING);
1183 } else /* ptype == "NONE" */ {
1184 goto skip;
1185 }
1186
1187 if (!strcmp(q->shortname, "gpob")) {
1188 sid = atoi(argv[4]);
1189 free(argv[4]);
1190 argv[4] = malloc(9);
1191 name = argv[4];
1192## repeat retrieve (name = users.login) where users.users_id = @sid
1193## inquire_equel(rowcount = "rowcount")
1194 if (rowcount != 1)
1195 sprintf(name, "#%d", sid);
1196 }
1197
1198 argv[2] = box;
1199 (*action)(q->vcnt, argv, actarg);
1200 skip:
1201 /* free saved data */
1202 free(argv[0]);
1203 free(argv[1]);
1204 free(argv);
1205 }
1206
1207 sq_destroy(sq);
1208 return (SMS_SUCCESS);
1209##}
1210
1211
1212/* followup_glin: fix the ace_name in argv[8]. argv[7] will contain the
1213 * ace_type: "LIST", "USER", or "NONE". Decode the id in argv[8] into the
1214 * proper name based on the type, and repace that string in the argv.
1215 * Also fixes the modby field by called followup_fix_modby.
1216 */
1217
1218followup_glin(q, sq, v, action, actarg, cl)
1219 register struct query *q;
1220 register struct save_queue *sq;
1221 register struct validate *v;
1222 register int (*action)();
1223 int actarg;
1224 client *cl;
1225##{
1226 char **argv, *malloc(), *realloc(), *type;
1227## char *name;
1228## int id, rowcount;
1229 int i, idx;
1230
1231 idx = 8;
1232 if (!strcmp(q->shortname, "gsin"))
1233 idx = 12;
1234
1235 while (sq_get_data(sq, &argv)) {
1236 sms_trim_args(q->vcnt, argv);
1237
1238 id = atoi(argv[i = q->vcnt - 2]);
1239 free(argv[i]);
1240 name = argv[i] = malloc(9);
1241## repeat retrieve (name = users.login) where users.users_id = @id
1242## inquire_equel(rowcount = "rowcount")
1243 if (rowcount != 1)
1244 sprintf(argv[i], "#%d", id);
1245
1246 id = atoi(argv[idx]);
1247 type = argv[idx - 1];
1248 if ((name = malloc(33)) == NULL)
1249 return(SMS_NO_MEM);
1250
1251 if (!strcmp(type, "LIST")) {
1252## repeat retrieve (name = list.#name) where list.list_id = @id
1253## inquire_equel(rowcount = "rowcount")
1254 if (rowcount != 1)
1255 strcpy(name, "???");
1256 } else if (!strcmp(type, "USER")) {
1257## repeat retrieve (name = users.login) where users.users_id = @id
1258## inquire_equel(rowcount = "rowcount")
1259 if (rowcount != 1)
1260 strcpy(name, "???");
1261 } else if (!strcmp(type, "NONE")) {
1262 strcpy(name, "NONE");
1263 } else
1264 strcpy(name, "???");
1265 free(argv[idx]);
1266 argv[idx] = name;
1267
1268 if (!strcmp(q->shortname, "glin") && atoi(argv[6]) == -1) {
1269 argv[6] = realloc(argv[6], strlen(UNIQUE_GID) + 1);
1270 strcpy(argv[6], UNIQUE_GID);
1271 }
1272
1273 /* send the data */
1274 (*action)(q->vcnt, argv, actarg);
1275
1276 /* free saved data */
1277 for (i = 0; i < q->vcnt; i++)
1278 free(argv[i]);
1279 free(argv);
1280 }
1281
1282 sq_destroy(sq);
1283 return (SMS_SUCCESS);
1284##}
1285
1286
1287/** followup_amtl - followup for amtl and dmfl; when adding a list
1288 ** member to a maillist, make member list a maillist also
1289 ** unless list is a user-group.
1290 ** Then set_list_modtime_by_id.
1291 **
1292 ** Inputs:
1293 ** argv[0] - list_id
1294 ** argv[1] - member_type
1295 ** argv[2] - member_id
1296 **
1297 **/
1298
1299followup_amtl(q, argv, cl)
1300 struct query *q;
1301 char *argv[];
1302 client *cl;
1303##{
1304## int list_id;
1305## int member_id;
1306## int exists, who;
1307## char *entity;
1308
1309 list_id = *(int *)argv[0];
1310 entity = cl->entity;
1311 who = cl->users_id;
1312
1313## range of l is list
1314## repeat replace l (modtime = "now", modby = @who, modwith = @entity)
1315## where l.#list_id = @list_id
1316
1317 /* if query is not amtl or if member_type is not LIST then return */
1318 if (bcmp(q->shortname, "amtl", 4) || bcmp(argv[1], "LIST", 4))
1319 return(SMS_SUCCESS);
1320
1321 member_id = *(int *)argv[2];
1322
1323 /* is parent list a mailing list? */
1324## repeat retrieve (exists = l.maillist) where l.#list_id=@list_id
1325 if (!exists)
1326 return(SMS_SUCCESS);
1327
1328 /* list is not a user-group; add list to maillist table */
1329## repeat replace l (maillist = 1) where l.#list_id = @member_id
1330 return(SMS_SUCCESS);
1331##}
1332
1333
1334/* followup_anfq: Add allocation to nfsphys after creating quota.
1335 * argv[0] = filsys_id
1336 * argv[2] = ascii(quota)
1337 */
1338
1339followup_anfq(q, argv, cl)
1340 struct query *q;
1341 char **argv;
1342 client *cl;
1343##{
1344## int quota, user, fs, who;
1345## char *entity;
1346
1347 fs = *(int *)argv[0];
1348 user = *(int *)argv[1];
1349 quota = atoi(argv[2]);
1350 who = cl->users_id;
1351 entity = cl->entity;
1352
1353## repeat replace nq (modtime = "now", modby = @who, modwith = @entity)
1354## where nq.filsys_id = @fs and nq.users_id = @user
1355## repeat replace nfsphys (allocated = nfsphys.allocated + @quota)
1356## where nfsphys.nfsphys_id = filesys.#phys_id and filesys.filsys_id = @fs
1357 return(SMS_SUCCESS);
1358##}
1359
1360
1361/* followup_gzcl:
1362 */
1363
1364followup_gzcl(q, sq, v, action, actarg, cl)
1365 register struct query *q;
1366 register struct save_queue *sq;
1367 register struct validate *v;
1368 register int (*action)();
1369 int actarg;
1370 client *cl;
1371##{
1372## char *name;
1373## int rowcount, id;
1374 char **argv;
1375 int i;
1376
1377 while (sq_get_data(sq, &argv)) {
1378 sms_trim_args(q->vcnt, argv);
1379
1380 id = atoi(argv[i = q->vcnt - 2]);
1381 free(argv[i]);
1382 name = argv[i] = malloc(9);
1383## repeat retrieve (name = users.login) where users.users_id = @id
1384## inquire_equel(rowcount = "rowcount")
1385 if (rowcount != 1)
1386 sprintf(argv[i], "#%d", id);
1387
1388 for (i = 1; i < 8; i+=2) {
1389 id = atoi(argv[i+1]);
1390 free(argv[i+1]);
1391 if ((name = argv[i+1] = malloc(33)) == NULL)
1392 return(SMS_NO_MEM);
1393 if (!strcmp(argv[i], "LIST")) {
1394## repeat retrieve (name = list.#name) where list.list_id = @id
1395## inquire_equel(rowcount = "rowcount")
1396 if (rowcount != 1)
1397 strcpy(name, "???");
1398 } else if (!strcmp(argv[i], "USER")) {
1399## repeat retrieve (name = users.login) where users.users_id = @id
1400## inquire_equel(rowcount = "rowcount")
1401 if (rowcount != 1)
1402 strcpy(name, "???");
1403 } else if (!strcmp(argv[i], "NONE")) {
1404 strcpy(name, "NONE");
1405 } else {
1406 strcpy(name, "???");
1407 }
1408 }
1409
1410 /* send the data */
1411 (*action)(q->vcnt, argv, actarg);
1412
1413 /* free saved data */
1414 for (i = 0; i < q->vcnt; i++)
1415 free(argv[i]);
1416 free(argv);
1417 }
1418 sq_destroy(sq);
1419 return(SMS_SUCCESS);
1420##}
1421
1422
1423/* followup_gsha:
1424 */
1425
1426followup_gsha(q, sq, v, action, actarg, cl)
1427 register struct query *q;
1428 register struct save_queue *sq;
1429 register struct validate *v;
1430 register int (*action)();
1431 int actarg;
1432 client *cl;
1433##{
1434## char *name;
1435## int rowcount, id;
1436 char **argv;
1437 int i;
1438
1439 while (sq_get_data(sq, &argv)) {
1440 sms_trim_args(q->vcnt, argv);
1441
1442 id = atoi(argv[4]);
1443 free(argv[4]);
1444 name = argv[4] = malloc(9);
1445## repeat retrieve (name = users.login) where users.users_id = @id
1446## inquire_equel(rowcount = "rowcount")
1447 if (rowcount != 1)
1448 sprintf(argv[4], "#%d", id);
1449
1450 id = atoi(argv[2]);
1451 free(argv[2]);
1452 if ((name = argv[2] = malloc(33)) == NULL)
1453 return(SMS_NO_MEM);
1454 if (!strcmp(argv[1], "LIST")) {
1455## repeat retrieve (name = list.#name) where list.list_id = @id
1456## inquire_equel(rowcount = "rowcount")
1457 if (rowcount != 1)
1458 strcpy(name, "???");
1459 } else if (!strcmp(argv[1], "USER")) {
1460## repeat retrieve (name = users.login) where users.users_id = @id
1461## inquire_equel(rowcount = "rowcount")
1462 if (rowcount != 1)
1463 strcpy(name, "???");
1464 } else if (!strcmp(argv[1], "NONE")) {
1465 strcpy(name, "NONE");
1466 } else {
1467 strcpy(name, "???");
1468 }
1469
1470 /* send the data */
1471 (*action)(q->vcnt, argv, actarg);
1472
1473 /* free saved data */
1474 for (i = 0; i < q->vcnt; i++)
1475 free(argv[i]);
1476 free(argv);
1477 }
1478 sq_destroy(sq);
1479 return(SMS_SUCCESS);
1480##}
1481
1482
1483\f
1484/* Special query routines */
1485
1486/* set_pobox - this does all of the real work.
1487 * argv = user_id, type, box
1488 * if type is POP, then box should be a machine, and its ID should be put in
1489 * pop_id. If type is SMTP, then box should be a string and its ID should
1490 * be put in box_id. If type is NONE, then box doesn't matter.
1491 */
1492
1493int set_pobox(q, argv, cl)
1494 struct query *q;
1495 char **argv;
1496 client *cl;
1497##{
1498## int user, id, rowcount;
1499## char *box, potype[9];
1500
1501 box = argv[2];
1502 user = *(int *)argv[0];
1503
1504## repeat retrieve (id = users.pop_id, potype = users.#potype)
1505## where users.users_id = @user
1506 if (!strcmp(strtrim(potype), "POP"))
1507 set_pop_usage(id, -1);
1508
1509 if (!strcmp(argv[1], "POP")) {
1510## repeat retrieve (id=machine.mach_id) where machine.name=uppercase(@box)
1511## inquire_equel(rowcount = "rowcount")
1512 if (rowcount != 1)
1513 return(SMS_MACHINE);
1514## repeat replace users (#potype = "POP", pop_id = @id)
1515## where users.users_id = @user
1516 set_pop_usage(id, 1);
1517 } else if (!strcmp(argv[1], "SMTP")) {
1518## range of s is strings
1519## repeat retrieve (id = s.string_id) where s.string = @box
1520## inquire_equel (rowcount = "rowcount")
1521 if (rowcount == 0) {
1522## range of v is values
1523## repeat retrieve (id = v.value) where v.name = "strings_id"
1524 id++;
1525## repeat replace v (value = @id) where v.name = "strings_id"
1526## append to strings (string_id = id, string = box)
1527 }
1528## repeat replace users (#potype = "SMTP", box_id = @id)
1529## where users.users_id = @user
1530 } else /* argv[1] == "NONE" */ {
1531## repeat replace users (#potype = "NONE") where users.users_id = @user
1532 }
1533
1534 set_pobox_modtime(q, argv, cl);
1535## repeat replace tblstats (updates = tblstats.updates + 1, modtime = "now")
1536## where tblstats.#table = "users"
1537 return(SMS_SUCCESS);
1538##}
1539
1540
1541/* get_list_info: passed a wildcard list name, returns lots of stuff about
1542 * each list. This is tricky: first build a queue of all requested
1543 * data. Rest of processing consists of fixing gid, ace_name, and modby.
1544 */
1545
1546get_list_info(q, aargv, cl, action, actarg)
1547 register struct query *q;
1548 char **aargv;
1549 client *cl;
1550 register int (*action)();
1551 int actarg;
1552##{
1553 char *argv[13], *malloc(), *realloc();
1554## char *name, acl_type[9], listname[33], active[5], public[5], hidden[5];
1555## char maillist[5], group[5], gid[6], acl_name[33], desc[256], modtime[27];
1556## char modby[9], modwith[9];
1557## int id, rowcount, acl_id, hid, modby_id;
1558 int returned;
1559 struct save_queue *sq, *sq_create();
1560
1561 returned = rowcount = 0;
1562 name = aargv[0];
1563
1564 sq = sq_create();
1565## range of l is list
1566## repeat retrieve (id = l.list_id) where l.#name = @name {
1567 sq_save_data(sq, id);
1568 rowcount++;
1569## }
1570 if (rowcount == 0)
1571 return(SMS_NO_MATCH);
1572
1573 argv[0] = listname; argv[1] = active; argv[2] = public; argv[3] = hidden;
1574 argv[4] = maillist; argv[5] = group; argv[6] = gid; argv[7] = acl_type;
1575 argv[8] = acl_name; argv[9] = desc; argv[10] = modtime; argv[11] = modby;
1576 argv[12] = modwith;
1577
1578 while (sq_get_data(sq, &id)) {
1579 if (id == 0)
1580 continue;
1581 argv[6] = gid;
1582## repeat retrieve (listname = l.#name, active = text(l.#active),
1583## public = text(l.#public), hidden = text(l.#hidden),
1584## hid = l.#hidden, maillist = text(l.#maillist),
1585## group = text(l.#group), gid = text(l.#gid),
1586## acl_type = trim(l.#acl_type), acl_id = l.#acl_id,
1587## desc = l.#desc, modtime = l.#modtime, modby_id = l.#modby,
1588## modwith =l.#modwith)
1589## where l.list_id = @id
1590
1591 if (atoi(gid) == -1)
1592 argv[6] = UNIQUE_GID;
1593
1594 if (!strcmp(acl_type, "LIST")) {
1595## repeat retrieve (acl_name = l.#name) where l.list_id = @acl_id
1596## inquire_equel(rowcount = "rowcount")
1597 if (rowcount != 1)
1598 strcpy(acl_name, "???");
1599 } else if (!strcmp(acl_type, "USER")) {
1600## repeat retrieve (acl_name = users.#login)
1601## where users.users_id = @acl_id
1602## inquire_equel(rowcount = "rowcount")
1603 if (rowcount != 1)
1604 strcpy(acl_name, "???");
1605 } else if (!strcmp(acl_type, "NONE")) {
1606 strcpy(acl_name, "NONE");
1607 } else
1608 strcpy(acl_name, "???");
1609
1610## repeat retrieve (modby = users.login) where users.users_id = @modby_id
1611## inquire_equel(rowcount = "rowcount")
1612 if (rowcount != 1)
1613 sprintf(modby, "#%d", id);
1614
1615 sms_trim_args(q->vcnt, argv);
1616 returned++;
1617 (*action)(q->vcnt, argv, actarg);
1618 }
1619
1620 sq_destroy(sq);
1621## repeat replace tblstats (retrieves = tblstats.retrieves + 1)
1622## where tblstats.#table = "list"
1623
1624 return (SMS_SUCCESS);
1625##}
1626
1627
1628/* get_ace_use - given a type and a name, return a type and a name.
1629 * The ace_type is one of "LIST", "USER", "RLIST", or "RUSER" in argv[0],
1630 * and argv[1] will contain the ID of the entity in question. The R*
1631 * types mean to recursively look at every containing list, not just
1632 * when the object in question is a direct member. On return, the
1633 * usage type will be one of LIST, SERVICE, FILESYS, QUOTA, QUERY, or ZEPHYR.
1634 */
1635
1636int get_ace_use(q, argv, cl, action, actarg)
1637 struct query *q;
1638 char *argv[];
1639 client *cl;
1640 int (*action)();
1641 int actarg;
1642##{
1643 int found = 0;
1644## char *atype;
1645## int aid, listid, id;
1646 struct save_queue *sq, *sq_create();
1647
1648 atype = argv[0];
1649 aid = *(int *)argv[1];
1650 if (!strcmp(atype, "LIST") || !strcmp(atype, "USER")) {
1651 return(get_ace_internal(atype, aid, action, actarg));
1652 }
1653
1654 sq = sq_create();
1655 if (!strcmp(atype, "RLIST")) {
1656 sq_save_data(sq, aid);
1657 /* get all the list_id's of containing lists */
1658## range of m is members
1659 while (sq_get_data(sq, &id)) {
1660## repeat retrieve (listid = m.list_id)
1661## where m.member_type = "LIST" and m.member_id = @id {
1662 sq_save_unique_data(sq, listid);
1663## }
1664 }
1665 /* now process each one */
1666 while (sq_get_data(sq, &id)) {
1667 if (get_ace_internal("LIST", id, action, actarg) == SMS_SUCCESS)
1668 found++;
1669 }
1670 }
1671
1672 if (!strcmp(atype, "RUSER")) {
1673## range of m is members
1674## repeat retrieve (listid = m.list_id)
1675## where m.member_type = "USER" and m.member_id = @aid {
1676 sq_save_data(sq, listid);
1677## }
1678 /* get all the list_id's of containing lists */
1679 while (sq_get_data(sq, &id)) {
1680## repeat retrieve (listid = m.list_id)
1681## where m.member_type = "LIST" and m.member_id = @id {
1682 sq_save_unique_data(sq, listid);
1683## }
1684 }
1685 /* now process each one */
1686 while (sq_get_data(sq, &id)) {
1687 if (get_ace_internal("LIST", id, action, actarg) == SMS_SUCCESS)
1688 found++;
1689 }
1690 if (get_ace_internal("USER", aid, action, actarg) == SMS_SUCCESS)
1691 found++;
1692 }
1693
1694 sq_destroy(sq);
1695 if (!found) return(SMS_NO_MATCH);
1696 return(SMS_SUCCESS);
1697##}
1698
1699
1700/* This looks up a single list or user for ace use. atype must be "USER"
1701 * or "LIST", and aid is the ID of the corresponding object. This is used
1702 * by get_ace_use above.
1703 */
1704
1705##get_ace_internal(atype, aid, action, actarg)
1706## char *atype;
1707## int aid;
1708 int (*action)();
1709 int actarg;
1710##{
1711 char *rargv[2];
1712 int found = 0;
1713## char name[33];
1714
1715 rargv[1] = name;
1716 if (!strcmp(atype, "LIST")) {
1717 rargv[0] = "FILESYS";
1718## repeat retrieve (name = filesys.label)
1719## where filesys.owners = @aid {
1720 (*action)(2, rargv, actarg);
1721 found++;
1722## }
1723
1724 rargv[0] = "QUERY";
1725## repeat retrieve (name = capacls.capability)
1726## where capacls.list_id = @aid {
1727 (*action)(2, rargv, actarg);
1728 found++;
1729## }
1730 } else if (!strcmp(atype, "USER")) {
1731 rargv[0] = "FILESYS";
1732## repeat retrieve (name = filesys.label)
1733## where filesys.owner = @aid {
1734 (*action)(2, rargv, actarg);
1735 found++;
1736## }
1737 }
1738
1739 rargv[0] = "LIST";
1740## repeat retrieve (name = list.#name)
1741## where list.acl_type = @atype and list.acl_id = @aid {
1742 (*action)(2, rargv, actarg);
1743 found++;
1744## }
1745
1746 rargv[0] = "SERVICE";
1747## repeat retrieve (name = servers.#name)
1748## where servers.acl_type = @atype and servers.acl_id = @aid {
1749 (*action)(2, rargv, actarg);
1750 found++;
1751## }
1752
1753 rargv[0] = "HOSTACCESS";
1754## repeat retrieve (name = machine.#name)
1755## where machine.mach_id = hostaccess.mach_id and
1756## hostaccess.acl_type = @atype and hostaccess.acl_id = @aid {
1757 (*action)(2, rargv, actarg);
1758 found++;
1759## }
1760 rargv[0] = "ZEPHYR";
1761## repeat retrieve (name = zephyr.class)
1762## where zephyr.xmt_type = @atype and zephyr.xmt_id = @aid or
1763## zephyr.sub_type = @atype and zephyr.sub_id = @aid or
1764## zephyr.iws_type = @atype and zephyr.iws_id = @aid or
1765## zephyr.iui_type = @atype and zephyr.iui_id = @aid {
1766 (*action)(2, rargv, actarg);
1767 found++;
1768## }
1769
1770 if (!found) return(SMS_NO_MATCH);
1771 return(SMS_SUCCESS);
1772##}
1773
1774
1775/* get_lists_of_member - given a type and a name, return the name and flags
1776 * of all of the lists of the given member. The member_type is one of
1777 * "LIST", "USER", "STRING", "RLIST", "RUSER", or "RSTRING" in argv[0],
1778 * and argv[1] will contain the ID of the entity in question. The R*
1779 * types mean to recursively look at every containing list, not just
1780 * when the object in question is a direct member.
1781 */
1782
1783int get_lists_of_member(q, argv, cl, action, actarg)
1784 struct query *q;
1785 char *argv[];
1786 client *cl;
1787 int (*action)();
1788 int actarg;
1789##{
1790 int found = 0;
1791## char *atype;
1792## int aid, listid, id;
1793 struct save_queue *sq, *sq_create();
1794
1795 atype = argv[0];
1796 aid = *(int *)argv[1];
1797 if (!strcmp(atype, "LIST") ||
1798 !strcmp(atype, "USER") ||
1799 !strcmp(atype, "STRING")) {
1800 return(glom_internal(atype, aid, action, actarg));
1801 }
1802
1803 sq = sq_create();
1804 if (!strcmp(atype, "RLIST")) {
1805 sq_save_data(sq, aid);
1806 /* get all the list_id's of containing lists */
1807## range of m is members
1808 while (sq_get_data(sq, &id)) {
1809## repeat retrieve (listid = m.list_id)
1810## where m.member_type = "LIST" and m.member_id = @id {
1811 sq_save_unique_data(sq, listid);
1812## }
1813 }
1814 /* now process each one */
1815 while (sq_get_data(sq, &id)) {
1816 if (glom_internal("LIST", id, action, actarg) == SMS_SUCCESS)
1817 found++;
1818 }
1819 }
1820
1821 if (!strcmp(atype, "RUSER")) {
1822## range of m is members
1823## repeat retrieve (listid = m.list_id)
1824## where m.member_type = "USER" and m.member_id = @aid {
1825 sq_save_data(sq, listid);
1826## }
1827 /* get all the list_id's of containing lists */
1828 while (sq_get_data(sq, &id)) {
1829## repeat retrieve (listid = m.list_id)
1830## where m.member_type = "LIST" and m.member_id = @id {
1831 sq_save_unique_data(sq, listid);
1832## }
1833 }
1834 /* now process each one */
1835 while (sq_get_data(sq, &id)) {
1836 if (glom_internal("LIST", id, action, actarg) == SMS_SUCCESS)
1837 found++;
1838 }
1839 if (glom_internal("USER", aid, action, actarg) == SMS_SUCCESS)
1840 found++;
1841 }
1842
1843 if (!strcmp(atype, "RSTRING")) {
1844## range of m is members
1845## repeat retrieve (listid = m.list_id)
1846## where m.member_type = "STRING" and m.member_id = @aid {
1847 sq_save_data(sq, listid);
1848## }
1849 /* get all the list_id's of containing lists */
1850 while (sq_get_data(sq, &id)) {
1851## repeat retrieve (listid = m.list_id)
1852## where m.member_type = "LIST" and m.member_id = @id {
1853 sq_save_unique_data(sq, listid);
1854## }
1855 }
1856 /* now process each one */
1857 while (sq_get_data(sq, &id)) {
1858 if (glom_internal("LIST", id, action, actarg) == SMS_SUCCESS)
1859 found++;
1860 }
1861 if (glom_internal("STRING", aid, action, actarg) == SMS_SUCCESS)
1862 found++;
1863 }
1864
1865## repeat replace tblstats (retrieves = tblstats.retrieves + 1)
1866## where tblstats.#table = "members"
1867 sq_destroy(sq);
1868 if (!found) return(SMS_NO_MATCH);
1869 return(SMS_SUCCESS);
1870##}
1871
1872
1873/* This looks up a single list, user, or string as a member. atype must be
1874 * "USER", "LIST", or "STRING" and aid is the ID of the corresponding object.
1875 * This is used by get_lists_of_members above.
1876 */
1877
1878##glom_internal(atype, aid, action, actarg)
1879## char *atype;
1880## int aid;
1881 int (*action)();
1882 int actarg;
1883##{
1884 char *rargv[6];
1885 int found = 0;
1886## char name[33], active[5], public[5], hidden[5], maillist[5], group[5];
1887
1888 rargv[0] = name;
1889 rargv[1] = active;
1890 rargv[2] = public;
1891 rargv[3] = hidden;
1892 rargv[4] = maillist;
1893 rargv[5] = group;
1894## repeat retrieve (name = list.#name, active = text(list.#active),
1895## public = text(list.#public), hidden = text(list.#hidden),
1896## maillist = text(list.#maillist), group = text(list.#group))
1897## where list.list_id = m.list_id and
1898## m.member_type = @atype and m.member_id = @aid {
1899 (*action)(6, rargv, actarg);
1900 found++;
1901## }
1902
1903 if (!found) return(SMS_NO_MATCH);
1904 return(SMS_SUCCESS);
1905##}
1906
1907
1908/* qualified_get_lists: passed "TRUE", "FALSE", or "DONTCARE" for each of
1909 * the five flags associated with each list. It will return the name of
1910 * each list that meets the quailifications. It does this by building a
1911 * where clause based on the arguments, then doing a retrieve.
1912 */
1913
1914static char *lflags[5] = { "active", "public", "hidden", "maillist", "group" };
1915
1916int qualified_get_lists(q, argv, cl, action, actarg)
1917 struct query *q;
1918 char *argv[];
1919 client *cl;
1920 int (*action)();
1921 int actarg;
1922{
1923 return(qualified_get(q, argv, action, actarg, "l.list_id != 0",
1924 "l", "name", lflags));
1925}
1926
1927
1928/** get_members_of_list - optimized query for retrieval of list members
1929 **
1930 ** Inputs:
1931 ** argv[0] - list_id
1932 **
1933 ** Description:
1934 ** - retrieve USER members, then LIST members, then STRING members
1935 **/
1936
1937get_members_of_list(q, argv, cl, action, actarg)
1938 struct query *q;
1939 char *argv[];
1940 client *cl;
1941 int (*action)();
1942 int actarg;
1943##{
1944## int list_id;
1945## char member_name[129];
1946 char *targv[2];
1947
1948 list_id = *(int *)argv[0];
1949 targv[0] = "USER";
1950 targv[1] = member_name;
1951
1952## range of m is members
1953## repeat retrieve (member_name = users.login)
1954## where m.#list_id = @list_id and m.member_type = "USER"
1955## and m.member_id = users.users_id
1956## sort by #member_name
1957## {
1958 (*action)(2, targv, actarg);
1959## }
1960
1961 targv[0] = "LIST";
1962## repeat retrieve (member_name = list.name)
1963## where m.#list_id = @list_id and m.member_type = "LIST"
1964## and m.member_id = list.#list_id
1965## sort by #member_name
1966## {
1967 (*action)(2, targv, actarg);
1968## }
1969
1970 targv[0] = "STRING";
1971## repeat retrieve (member_name = strings.string)
1972## where m.#list_id = @list_id and m.member_type = "STRING"
1973## and m.member_id = strings.string_id
1974## sort by #member_name
1975## {
1976 (*action)(2, targv, actarg);
1977## }
1978
1979## repeat replace tblstats (retrieves = tblstats.retrieves + 1)
1980## where tblstats.#table = "members"
1981 return(SMS_SUCCESS);
1982##}
1983
1984
1985/* count_members_of_list: this is a simple query, but it cannot be done
1986 * through the dispatch table.
1987 */
1988
1989int count_members_of_list(q, argv, cl, action, actarg)
1990 struct query *q;
1991 char *argv[];
1992 client *cl;
1993 int (*action)();
1994 int actarg;
1995##{
1996## int list, ct = 0;
1997 char *rargv[1], countbuf[5];
1998
1999 list = *(int *)argv[0];
2000 rargv[0] = countbuf;
2001## repeat retrieve (ct = count(members.list_id where members.list_id = @list))
2002 sprintf(countbuf, "%d", ct);
2003 (*action)(1, rargv, actarg);
2004## repeat replace tblstats (retrieves = tblstats.retrieves + 1)
2005## where tblstats.#table = "members"
2006 return(SMS_SUCCESS);
2007##}
2008
2009
2010/* qualified_get_server: passed "TRUE", "FALSE", or "DONTCARE" for each of
2011 * the three flags associated with each service. It will return the name of
2012 * each service that meets the quailifications. It does this by building a
2013 * where clause based on the arguments, then doing a retrieve.
2014 */
2015
2016static char *sflags[3] = { "enable", "inprogress", "harderror" };
2017
2018int qualified_get_server(q, argv, cl, action, actarg)
2019 struct query *q;
2020 char *argv[];
2021 client *cl;
2022 int (*action)();
2023 int actarg;
2024{
2025 return(qualified_get(q, argv, action, actarg, "s.name != \"\"",
2026 "s", "name", sflags));
2027}
2028
2029
2030/* generic qualified get routine, used by qualified_get_lists,
2031 * qualified_get_server, and qualified_get_serverhost.
2032 * Args:
2033 * start - a simple where clause, must not be empty
2034 * range - the name of the range variable
2035 * field - the field to return
2036 * flags - an array of strings, names of the flag variables
2037 */
2038
2039int qualified_get(q, argv, action, actarg, start, range, field, flags)
2040 struct query *q;
2041 char *argv[];
2042 int (*action)();
2043 int actarg;
2044 char *start;
2045 char *range;
2046 char *field;
2047 char *flags[];
2048##{
2049## char name[33], qual[256], *rvar, *rtbl, *rfield;
2050 char *rargv[1], buf[32];
2051## int rowcount, i;
2052
2053 strcpy(qual, start);
2054 for (i = 0; i < q->argc; i++) {
2055 if (!strcmp(argv[i], "TRUE")) {
2056 sprintf(buf, " and %s.%s != 0", range, flags[i]);
2057 (void) strcat(qual, buf);
2058 } else if (!strcmp(argv[i], "FALSE")) {
2059 sprintf(buf, " and %s.%s = 0", range, flags[i]);
2060 (void) strcat(qual, buf);
2061 }
2062 }
2063
2064 rargv[0] = name;
2065 rvar = range;
2066 rtbl = q->rtable;
2067 rfield = field;
2068## range of rvar is rtbl
2069## retrieve (name = rvar.rfield) where qual {
2070 (*action)(1, rargv, actarg);
2071## }
2072## inquire_equel(rowcount = "rowcount")
2073## repeat replace tblstats (retrieves = tblstats.retrieves + 1)
2074## where tblstats.#table = @rtbl
2075 if (rowcount == 0)
2076 return(SMS_NO_MATCH);
2077 return(SMS_SUCCESS);
2078##}
2079
2080
2081/* qualified_get_serverhost: passed "TRUE", "FALSE", or "DONTCARE" for each of
2082 * the five flags associated with each serverhost. It will return the name of
2083 * each service and host that meets the quailifications. It does this by
2084 * building a where clause based on the arguments, then doing a retrieve.
2085 */
2086
2087static char *shflags[6] = { "service", "enable", "override", "success",
2088 "inprogress", "hosterror" };
2089
2090int qualified_get_serverhost(q, argv, cl, action, actarg)
2091 struct query *q;
2092 char *argv[];
2093 client *cl;
2094 int (*action)();
2095 int actarg;
2096##{
2097## char sname[33], mname[33], qual[256];
2098 char *rargv[2], buf[32];
2099## int rowcount, i;
2100
2101 sprintf(qual, "machine.mach_id = sh.mach_id and sh.service = uppercase(\"%s\")",
2102 argv[0]);
2103 for (i = 1; i < q->argc; i++) {
2104 if (!strcmp(argv[i], "TRUE")) {
2105 sprintf(buf, " and sh.%s != 0", shflags[i]);
2106 strcat(qual, buf);
2107 } else if (!strcmp(argv[i], "FALSE")) {
2108 sprintf(buf, " and sh.%s = 0", shflags[i]);
2109 strcat(qual, buf);
2110 }
2111 }
2112
2113 rargv[0] = sname;
2114 rargv[1] = mname;
2115## range of sh is serverhosts
2116## retrieve (sname = sh.service, mname = machine.name) where qual {
2117 (*action)(2, rargv, actarg);
2118## }
2119## inquire_equel(rowcount = "rowcount")
2120## repeat replace tblstats (retrieves = tblstats.retrieves + 1)
2121## where tblstats.#table = "serverhosts"
2122 if (rowcount == 0)
2123 return(SMS_NO_MATCH);
2124 return(SMS_SUCCESS);
2125##}
2126
2127
2128/* register_user - change user's login name and allocate a pobox, group,
2129 * filesystem, and quota for them. The user's status must start out as 0,
2130 * and is left as 2. Arguments are: user's UID, new login name, and user's
2131 * type for filesystem allocation (SMS_FS_STUDENT, SMS_FS_FACULTY,
2132 * SMS_FS_STAFF, SMS_FS_MISC).
2133 */
2134
2135register_user(q, argv, cl)
2136 struct query *q;
2137 char **argv;
2138 client *cl;
2139##{
2140## char *login, dir[65], *entity, *directory, machname[33];
2141## int who, rowcount, mid, uid, users_id, flag, utype, nid, list_id, quota;
2142## int size, alloc, pid, m_id;
2143 int maxsize;
2144
2145 entity = cl->entity;
2146 who = cl->users_id;
2147
2148 uid = atoi(argv[0]);
2149 login = argv[1];
2150 utype = atoi(argv[2]);
2151
2152## range of u is users
2153## range of l is list
2154## range of sh is serverhosts
2155## range of n is nfsphys
2156## range of m is machine
2157
2158 /* find user */
2159## repeat retrieve (users_id = u.#users_id)
2160## where u.#uid = @uid and u.status = 0
2161## inquire_equel(rowcount = "rowcount");
2162 if (rowcount == 0)
2163 return(SMS_NO_MATCH);
2164 if (rowcount > 1)
2165 return(SMS_NOT_UNIQUE);
2166
2167 /* check new login name */
2168## repeat retrieve (flag = any(u.#login where u.#login = @login))
2169 if (flag)
2170 return(SMS_IN_USE);
2171## repeat retrieve (flag = any(l.#name where l.#name = @login))
2172 if (flag)
2173 return(SMS_IN_USE);
2174## repeat retrieve (flag = any(filesys.#name where filesys.#name = @login))
2175 if (flag)
2176 return(SMS_IN_USE);
2177 com_err(whoami, 0, "new login name OK");
2178
2179 /* choose place for pobox, put in mid */
2180## repeat retrieve (mid = sh.mach_id, machname = m.name)
2181## where sh.service = "POP" and m.mach_id = sh.mach_id and
2182## sh.value2 - sh.value1 = max(sh.value2-sh.value1 where sh.service="POP")
2183## inquire_equel(rowcount = "rowcount");
2184 if (rowcount == 0)
2185 return(SMS_NO_POBOX);
2186
2187 /* change login name, set pobox */
2188## repeat replace u (#login = @login, status = 2, modtime = "now",
2189## modby = @who, modwith = @entity, potype="POP",
2190## pop_id = @mid, pmodtime="now", pmodby=@who,
2191## pmodwith=@entity)
2192## where u.#users_id = @users_id
2193## inquire_equel(rowcount = "rowcount");
2194 if (rowcount != 1)
2195 return(SMS_INTERNAL);
2196 set_pop_usage(mid, 1);
2197 com_err(whoami, 0, "set login name to %s and pobox to %s", login,
2198 trim(machname));
2199
2200 /* create group list */
2201 if (set_next_object_id("gid", "list"))
2202 return(SMS_NO_ID);
2203 if (set_next_object_id("list_id", "list"))
2204 return(SMS_NO_ID);
2205## repeat retrieve (list_id = values.value) where values.name = "list_id"
2206## inquire_equel(rowcount = "rowcount");
2207 if (rowcount != 1)
2208 return(SMS_INTERNAL);
2209## repeat append list (name = @login, #list_id = @list_id, active = 1,
2210## public = 0, hidden = 0, maillist = 0, group = 1,
2211## #gid = values.value, desc = "User Group",
2212## acl_type = "USER", acl_id = @users_id, modtime = "now",
2213## modby = @who, modwith = @entity)
2214## where values.name = "gid"
2215## inquire_equel(rowcount = "rowcount");
2216 if (rowcount != 1)
2217 return(SMS_INTERNAL);
2218## repeat append members (#list_id = @list_id, member_type = "USER",
2219## member_id = @users_id)
2220## inquire_equel(rowcount = "rowcount");
2221 if (rowcount != 1)
2222 return(SMS_INTERNAL);
2223 com_err(whoami, 0, "group list created");
2224
2225 /* decide where to put filesystem */
2226 maxsize = 0;
2227 directory = NULL;
2228## repeat retrieve (mid = n.mach_id, dir = trim(n.#dir), nid = n.nfsphys_id,
2229## flag = n.status, size = n.#size, alloc = n.allocated) {
2230 if ((flag & utype) && (size != 0) && (size - alloc > maxsize)) {
2231 maxsize = size - alloc;
2232 if (directory)
2233 free(directory);
2234 directory = strsave(dir);
2235 pid = nid;
2236 m_id = mid;
2237 }
2238## }
2239 if (maxsize == 0)
2240 return(SMS_NO_FILESYS);
2241
2242 /* create filesystem */
2243 if (set_next_object_id("filsys_id", "filesys"))
2244 return(SMS_NO_ID);
2245## repeat append filesys (filsys_id = values.value, phys_id = @pid,
2246## label = @login, type = "NFS", mach_id = @m_id,
2247## name = @directory + "/" + @login,
2248## mount = "/mit/" + @login,
2249## access = "w", comments = "User Locker",
2250## owner = @users_id, owners = @list_id, createflg = 1,
2251## lockertype = "HOMEDIR", modtime = "now",
2252## modby = @who, modwith = @entity)
2253## where values.name = "filsys_id"
2254## inquire_equel(rowcount = "rowcount");
2255 if (rowcount != 1)
2256 return(SMS_INTERNAL);
2257 com_err(whoami, 0, "filesys created on mach %d in %s/%s", m_id,
2258 directory, login);
2259
2260 /* set quota */
2261## repeat retrieve (quota = values.value) where values.name = "def_quota"
2262## inquire_equel(rowcount = "rowcount");
2263 if (rowcount != 1)
2264 return(SMS_NO_QUOTA);
2265## repeat append nfsquota (#users_id = @users_id, filsys_id = values.value,
2266## #quota = @quota, phys_id = @pid, modtime = "now",
2267## modby = @who, modwith = @entity)
2268## where values.name = "filsys_id"
2269## inquire_equel(rowcount = "rowcount");
2270 if (rowcount != 1)
2271 return(SMS_INTERNAL);
2272## repeat replace nfsphys (allocated = nfsphys.allocated + @quota)
2273## where nfsphys.nfsphys_id = filesys.#phys_id and
2274## filesys.filsys_id = values.value and values.name = "filsys_id"
2275## inquire_equel(rowcount = "rowcount");
2276 if (rowcount != 1)
2277 return(SMS_INTERNAL);
2278 com_err(whoami, 0, "quota of %d assigned", quota);
2279
2280## repeat replace tblstats (updates = tblstats.updates + 1, modtime = "now")
2281## where tblstats.table = "users"
2282## repeat replace tblstats (appends = tblstats.appends + 1, modtime = "now")
2283## where tblstats.table = "list" or tblstats.table = "filesys" or
2284## tblstats.table = "nfsquota"
2285 return(SMS_SUCCESS);
2286##}
2287
2288
2289
2290/** set_pop_usage - incr/decr usage count for pop server in serverhosts talbe
2291 **
2292 ** Inputs:
2293 ** id of machine
2294 ** delta (will be +/- 1)
2295 **
2296 ** Description:
2297 ** - incr/decr value field in serverhosts table for pop/mach_id
2298 **
2299 **/
2300
2301static int set_pop_usage(id, count)
2302int id;
2303int count;
2304##{
2305## int mach_id = id;
2306## int n = count;
2307
2308## range of sh is serverhosts
2309## repeat replace sh (value1 = sh.value1 + @n)
2310## where sh.service = "POP" and sh.#mach_id = @mach_id
2311
2312 return(SMS_SUCCESS);
2313##}
2314
2315
2316\f
2317/* Validation Routines */
2318
2319validate_row(q, argv, v)
2320 register struct query *q;
2321 char *argv[];
2322 register struct validate *v;
2323##{
2324## char *rvar;
2325## char *table;
2326## char *name;
2327## char qual[128];
2328## int rowcount;
2329
2330 /* build where clause */
2331 build_qual(v->qual, v->argc, argv, qual);
2332
2333 /* setup ingres variables */
2334 rvar = q->rvar;
2335 table = q->rtable;
2336 name = v->field;
2337
2338 if (log_flags & LOG_VALID)
2339 /* tell the logfile what we're doing */
2340 com_err(whoami, 0, "validating row: %s", qual);
2341
2342 /* look for the record */
2343## range of rvar is table
2344## retrieve (rowcount = count(rvar.name where qual))
2345 if (rowcount == 0) return(SMS_NO_MATCH);
2346 if (rowcount > 1) return(SMS_NOT_UNIQUE);
2347 return(SMS_EXISTS);
2348##}
2349
2350validate_fields(q, argv, vo, n)
2351 struct query *q;
2352 register char *argv[];
2353 register struct valobj *vo;
2354 register int n;
2355{
2356 register int status;
2357
2358 while (--n >= 0) {
2359 switch (vo->type) {
2360 case V_NAME:
2361 if (log_flags & LOG_VALID)
2362 com_err(whoami, 0, "validating %s in %s: %s",
2363 vo->namefield, vo->table, argv[vo->index]);
2364 status = validate_name(argv, vo);
2365 break;
2366
2367 case V_ID:
2368 if (log_flags & LOG_VALID)
2369 com_err(whoami, 0, "validating %s in %s: %s",
2370 vo->idfield, vo->table, argv[vo->index]);
2371 status = validate_id(argv, vo);
2372 break;
2373
2374 case V_DATE:
2375 if (log_flags & LOG_VALID)
2376 com_err(whoami, 0, "validating date: %s", argv[vo->index]);
2377 status = validate_date(argv, vo);
2378 break;
2379
2380 case V_TYPE:
2381 if (log_flags & LOG_VALID)
2382 com_err(whoami, 0, "validating %s type: %s",
2383 vo->table, argv[vo->index]);
2384 status = validate_type(argv, vo);
2385 break;
2386
2387 case V_TYPEDATA:
2388 if (log_flags & LOG_VALID)
2389 com_err(whoami, 0, "validating typed data (%s): %s",
2390 argv[vo->index - 1], argv[vo->index]);
2391 status = validate_typedata(q, argv, vo);
2392 break;
2393
2394 case V_RENAME:
2395 if (log_flags & LOG_VALID)
2396 com_err(whoami, 0, "validating rename %s in %s",
2397 argv[vo->index], vo->table);
2398 status = validate_rename(argv, vo);
2399 break;
2400
2401 case V_CHAR:
2402 if (log_flags & LOG_VALID)
2403 com_err(whoami, 0, "validating chars: %s", argv[vo->index]);
2404 status = validate_chars(argv[vo->index]);
2405 break;
2406
2407 case V_SORT:
2408 status = SMS_EXISTS;
2409 break;
2410
2411 }
2412
2413 if (status != SMS_EXISTS) return(status);
2414 vo++;
2415 }
2416
2417 return(SMS_SUCCESS);
2418}
2419
2420
2421/* validate_chars: verify that there are no illegal characters in
2422 * the string. Legal characters are printing chars other than
2423 * ", *, ?, \, [ and ].
2424 */
2425static int illegalchars[] = {
2426 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* ^@ - ^O */
2427 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* ^P - ^_ */
2428 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, /* SPACE - / */
2429 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, /* 0 - ? */
2430 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* @ - O */
2431 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, /* P - _ */
2432 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* ` - o */
2433 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, /* p - ^? */
2434 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2435 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2436 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2437 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2438 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2439 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2440 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2441 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2442};
2443
2444validate_chars(s)
2445register char *s;
2446{
2447 while (*s)
2448 if (illegalchars[*s++])
2449 return(SMS_BAD_CHAR);
2450 return(SMS_EXISTS);
2451}
2452
2453
2454validate_id(argv, vo)
2455 char *argv[];
2456 register struct valobj *vo;
2457##{
2458## char *name;
2459## char *table;
2460## char *namefield;
2461## char *idfield;
2462## int id;
2463## int rowcount;
2464 register char *c;
2465
2466 name = argv[vo->index];
2467 table = vo->table;
2468 /* minor kludge to upcasify machine names */
2469 if (!strcmp(table, "machine"))
2470 for (c = name; *c; c++) if (islower(*c)) *c = toupper(*c);
2471 namefield = vo->namefield;
2472 idfield = vo->idfield;
2473 if (!strcmp(namefield, "uid")) {
2474## retrieve (id = table.idfield) where table.namefield = int4(name)
2475## inquire_equel (rowcount = "rowcount")
2476 } else {
2477## retrieve (id = table.idfield) where table.namefield = name
2478## inquire_equel (rowcount = "rowcount")
2479 }
2480 if (rowcount != 1) return(vo->error);
2481 *(int *)argv[vo->index] = id;
2482 return(SMS_EXISTS);
2483##}
2484
2485validate_name(argv, vo)
2486 char *argv[];
2487 register struct valobj *vo;
2488##{
2489## char *name;
2490## char *table;
2491## char *namefield;
2492## int rowcount;
2493 register char *c;
2494
2495 name = argv[vo->index];
2496 table = vo->table;
2497 namefield = vo->namefield;
2498 if (!strcmp(table, "servers") && !strcmp(namefield, "name")) {
2499 for (c = name; *c; c++)
2500 if (islower(*c))
2501 *c = toupper(*c);
2502 }
2503## retrieve (rowcount = countu(table.namefield
2504## where table.namefield = name))
2505 return ((rowcount == 1) ? SMS_EXISTS : vo->error);
2506##}
2507
2508validate_date(argv, vo)
2509 char *argv[];
2510 struct valobj *vo;
2511##{
2512## char *idate;
2513## double dd;
2514## int errorno;
2515
2516 idate = argv[vo->index];
2517
2518## retrieve (dd = interval("years", date(idate) - date("today")))
2519## inquire_equel (errorno = "errorno")
2520 if (errorno != 0 || dd > 5.0) return(SMS_DATE);
2521 return(SMS_EXISTS);
2522##}
2523
2524
2525validate_rename(argv, vo)
2526char *argv[];
2527struct valobj *vo;
2528##{
2529## char *name, *table, *namefield, *idfield;
2530## int id;
2531 register char *c;
2532
2533 c = name = argv[vo->index];
2534 while (*c)
2535 if (illegalchars[*c++])
2536 return(SMS_BAD_CHAR);
2537 table = vo->table;
2538 /* minor kludge to upcasify machine names */
2539 if (!strcmp(table, "machine"))
2540 for (c = name; *c; c++) if (islower(*c)) *c = toupper(*c);
2541 namefield = vo->namefield;
2542 idfield = vo->idfield;
2543 id = -1;
2544 if (idfield == 0) {
2545 if (!strcmp(argv[vo->index], argv[vo->index - 1]))
2546 return(SMS_EXISTS);
2547## retrieve (id = any(table.namefield where table.namefield = name))
2548 if (id)
2549 return(vo->error);
2550 else
2551 return(SMS_EXISTS);
2552 }
2553## retrieve (id = table.idfield) where table.namefield = name
2554 if (id == -1 || id == *(int *)argv[vo->index - 1])
2555 return(SMS_EXISTS);
2556 else
2557 return(vo->error);
2558##}
2559
2560
2561validate_type(argv, vo)
2562 char *argv[];
2563 register struct valobj *vo;
2564##{
2565## char *typename;
2566## char *value;
2567## int exists;
2568 register char *c;
2569
2570 typename = vo->table;
2571 c = value = argv[vo->index];
2572 while (*c)
2573 if (illegalchars[*c++])
2574 return(SMS_BAD_CHAR);
2575
2576 /* uppercase type fields */
2577 for (c = value; *c; c++) if (islower(*c)) *c = toupper(*c);
2578
2579## range of a is alias
2580## repeat retrieve (exists = any(a.trans where a.name = @typename and
2581## a.type = "TYPE" and
2582## a.trans = @value))
2583 return (exists ? SMS_EXISTS : vo->error);
2584##}
2585
2586/* validate member or type-specific data field */
2587
2588validate_typedata(q, argv, vo)
2589 register struct query *q;
2590 register char *argv[];
2591 register struct valobj *vo;
2592##{
2593## char *name;
2594## char *field_type;
2595## char data_type[129];
2596## int id;
2597## int rowcount;
2598 char *index();
2599 register char *c;
2600
2601 /* get named object */
2602 name = argv[vo->index];
2603
2604 /* get field type string (known to be at index-1) */
2605 field_type = argv[vo->index-1];
2606
2607 /* get corresponding data type associated with field type name */
2608## repeat retrieve (data_type = alias.trans)
2609## where alias.#name = @field_type and alias.type = "TYPEDATA"
2610## inquire_equel (rowcount = "rowcount")
2611 if (rowcount != 1) return(SMS_TYPE);
2612
2613 /* now retrieve the record id corresponding to the named object */
2614 if (index(data_type, ' '))
2615 *index(data_type, ' ') = 0;
2616 if (!strcmp(data_type, "user")) {
2617 /* USER */
2618## repeat retrieve (id = users.users_id) where users.login = @name
2619## inquire_equel (rowcount = "rowcount")
2620 if (rowcount != 1) return(SMS_USER);
2621
2622 } else if (!strcmp(data_type, "list")) {
2623 /* LIST */
2624## repeat retrieve (id = list.list_id) where list.#name = @name
2625## inquire_equel (rowcount = "rowcount")
2626 if (rowcount != 1) {
2627 /* if idfield is non-zero, then if argv[0] matches the string
2628 * that we're trying to resolve, we should get the value of
2629 * values.[idfield] for the id.
2630 */
2631 if (vo->idfield && !strcmp(argv[0], argv[vo->index])) {
2632 set_next_object_id(q->validate->object_id, q->rtable);
2633 name = vo->idfield;
2634## repeat retrieve (id = values.value) where values.#name = @name
2635## inquire_equel(rowcount = "rowcount")
2636 if (rowcount != 1) return(SMS_LIST);
2637 } else
2638 return(SMS_LIST);
2639 }
2640 } else if (!strcmp(data_type, "machine")) {
2641 /* MACHINE */
2642 for (c = name; *c; c++) if (islower(*c)) *c = toupper(*c);
2643## repeat retrieve (id = machine.mach_id) where machine.#name = @name
2644## inquire_equel (rowcount = "rowcount")
2645 if (rowcount != 1) return(SMS_MACHINE);
2646
2647 } else if (!strcmp(data_type, "string")) {
2648 /* STRING */
2649## range of s is strings
2650## repeat retrieve (id = s.string_id) where s.string = @name
2651## inquire_equel (rowcount = "rowcount")
2652 if (rowcount == 0) {
2653 if (q->type != APPEND) return(SMS_STRING);
2654## range of v is values
2655## retrieve (id = v.value) where v.#name = "strings_id"
2656 id++;
2657## replace v (value = id) where v.#name = "strings_id"
2658## append to strings (string_id = id, string = name)
2659 }
2660 } else if (!strcmp(data_type, "none")) {
2661 id = 0;
2662 } else {
2663 return(SMS_TYPE);
2664 }
2665
2666 /* now set value in argv */
2667 *(int *)argv[vo->index] = id;
2668
2669 return (SMS_EXISTS);
2670##}
2671
2672
2673/* This looks up a login name and returns the SMS internal ID. It is used
2674 * by authenticate to put the users_id in the client structure.
2675 */
2676
2677int get_users_id(name)
2678char *name;
2679##{
2680## int id, rowcount;
2681## char *login;
2682
2683 login = name;
2684
2685## range of u is users
2686## repeat retrieve (id = u.#users_id) where u.#login = @login
2687## inquire_equel (rowcount = "rowcount")
2688
2689 if (rowcount == 1)
2690 return(id);
2691 else
2692 return(0);
2693##}
2694
2695
2696/* Check the database at startup time. For now this just resets the
2697 * inprogress flags that the DCM uses.
2698 */
2699
2700sanity_check_database()
2701##{
2702##}
This page took 0.248374 seconds and 5 git commands to generate.