]> andersk Git - moira.git/blame_incremental - server/qsupport.qc
documented optional servername on connect command
[moira.git] / server / qsupport.qc
... / ...
CommitLineData
1/*
2 * $Source$
3 * $Author$
4 * $Header$
5 *
6 * Copyright (C) 1987 by the Massachusetts Institute of Technology
7 * For copying and distribution information, please see the file
8 * <mit-copyright.h>.
9 *
10 */
11
12#ifndef lint
13static char *rcsid_qsupport_qc = "$Header$";
14#endif lint
15
16#include <mit-copyright.h>
17#include "query.h"
18#include "sms_server.h"
19#include <ctype.h>
20
21
22extern char *whoami, *strsave();
23
24
25/* Specialized Access Routines */
26
27/* access_user - verify that client name equals specified login name
28 *
29 * - since field validation routines are called first, a users_id is
30 * now in argv[0] instead of the login name.
31 */
32
33access_user(q, argv, cl)
34 struct query *q;
35 char *argv[];
36 client *cl;
37{
38 if (cl->users_id != *(int *)argv[0])
39 return(SMS_PERM);
40 else
41 return(SMS_SUCCESS);
42}
43
44
45
46/* access_login - verify that client name equals specified login name
47 *
48 * argv[0...n] contain search info. q->
49 */
50
51access_login(q, argv, cl)
52 struct query *q;
53 char *argv[];
54 client *cl;
55##{
56## int rowcount, id;
57## char qual[256];
58
59 build_qual(q->qual, q->argc, argv, qual);
60## retrieve (id = u.users_id) where qual
61## inquire_equel(rowcount = "rowcount")
62 if (rowcount != 1 || id != cl->users_id)
63 return(SMS_PERM);
64 else
65 return(SMS_SUCCESS);
66##}
67
68
69
70/* access_list - check access for most list operations
71 *
72 * Inputs: argv[0] - list_id
73 * q - query name
74 * argv[2] - member ID (only for queries "amtl" and "dmfl")
75 * argv[7] - group IID (only for query "ulis")
76 * cl - client name
77 *
78 * - check that client is a member of the access control list
79 * - OR, if the query is add_member_to_list or delete_member_from_list
80 * and the list is public, allow access if client = member
81 */
82
83access_list(q, argv, cl)
84 struct query *q;
85 char *argv[];
86 client *cl;
87##{
88## int list_id, acl_id, flags, rowcount, gid;
89## char acl_type[9];
90 char *client_type;
91 int client_id, status;
92
93 list_id = *(int *)argv[0];
94## repeat retrieve (acl_id = list.#acl_id, acl_type = list.#acl_type,
95## gid = list.#gid, flags = list.#public)
96## where list.#list_id = @list_id
97## inquire_equel(rowcount = "rowcount")
98 if (rowcount != 1)
99 return(SMS_INTERNAL);
100
101 /* parse client structure */
102 if ((status = get_client(cl, &client_type, &client_id)) != SMS_SUCCESS)
103 return(status);
104
105 /* if amtl or dmfl and list is public allow client to add or delete self */
106 if ((!strcmp("amtl", q->shortname) || !strcmp("dmfl", q->shortname)) &&
107 (flags && !strcmp("USER", argv[1]))) {
108 if (*(int *)argv[2] == client_id) return(SMS_SUCCESS);
109 /* if update_list, don't allow them to change the GID */
110 } else if (!strcmp("ulis", q->shortname)) {
111 if ((!strcmp(argv[7], UNIQUE_GID) && (gid != -1)) ||
112 (strcmp(argv[7], UNIQUE_GID) && (gid != atoi(argv[7]))))
113 return(SMS_PERM);
114 }
115
116 /* check for client in access control list */
117 status = find_member(acl_type, acl_id, client_type, client_id, 0);
118 if (!status) return(SMS_PERM);
119
120 return(SMS_SUCCESS);
121##}
122
123
124/* access_visible_list - allow access to list only if it is not hidden,
125 * or if the client is on the ACL
126 *
127 * Inputs: argv[0] - list_id
128 * cl - client identifier
129 */
130
131access_visible_list(q, argv, cl)
132 struct query *q;
133 char *argv[];
134 client *cl;
135##{
136## int list_id, acl_id, flags, rowcount;
137## char acl_type[9];
138 char *client_type;
139 int client_id, status;
140
141 list_id = *(int *)argv[0];
142## repeat retrieve (flags = list.hidden, acl_id = list.#acl_id,
143## acl_type = list.#acl_type) where list.#list_id = @list_id
144## inquire_equel(rowcount = "rowcount")
145 if (rowcount != 1)
146 return(SMS_INTERNAL);
147 if (!flags)
148 return(SMS_SUCCESS);
149
150 /* parse client structure */
151 if ((status = get_client(cl, &client_type, &client_id)) != SMS_SUCCESS)
152 return(status);
153
154 /* check for client in access control list */
155 status = find_member(acl_type, acl_id, client_type, client_id, 0);
156 if (!status)
157 return(SMS_PERM);
158
159 return(SMS_SUCCESS);
160##}
161
162
163/* access_vis_list_by_name - allow access to list only if it is not hidden,
164 * or if the client is on the ACL
165 *
166 * Inputs: argv[0] - list name
167 * cl - client identifier
168 */
169
170access_vis_list_by_name(q, argv, cl)
171 struct query *q;
172 char *argv[];
173 client *cl;
174##{
175## int acl_id, flags, rowcount;
176## char acl_type[9], *listname;
177 char *client_type;
178 int client_id, status;
179
180 listname = argv[0];
181## repeat retrieve (flags = list.hidden, acl_id = list.#acl_id,
182## acl_type = list.#acl_type) where list.#name = @listname
183## inquire_equel(rowcount = "rowcount");
184 if (rowcount > 1)
185 return(SMS_WILDCARD);
186 if (rowcount == 0)
187 return(SMS_NO_MATCH);
188 if (!flags)
189 return(SMS_SUCCESS);
190
191 /* parse client structure */
192 if ((status = get_client(cl, &client_type, &client_id)) != SMS_SUCCESS)
193 return(status);
194
195 /* check for client in access control list */
196 status = find_member(acl_type, acl_id, client_type, client_id, 0);
197 if (!status)
198 return(SMS_PERM);
199
200 return(SMS_SUCCESS);
201##}
202
203
204/* access_member - allow user to access member of type "USER" and name matches
205 * username, or to access member of type "LIST" and list is one that user is
206 * on the acl of, or the list is visible.
207 */
208
209access_member(q, argv, cl)
210 struct query *q;
211 char *argv[];
212 client *cl;
213{
214 if (!strcmp(argv[0], "LIST") || !strcmp(argv[0], "RLIST"))
215 return(access_visible_list(q, &argv[1], cl));
216
217 if (!strcmp(argv[0], "USER") || !strcmp(argv[0], "RUSER")) {
218 if (cl->users_id == *(int *)argv[1])
219 return(SMS_SUCCESS);
220 }
221
222 return(SMS_PERM);
223}
224
225
226/* access_qgli - special access routine for Qualified_get_lists. Allows
227 * access iff argv[0] == "TRUE" and argv[2] == "FALSE".
228 */
229
230access_qgli(q, argv, cl)
231 struct query *q;
232 char *argv[];
233 client *cl;
234{
235 if (!strcmp(argv[0], "TRUE") && !strcmp(argv[2], "FALSE"))
236 return(SMS_SUCCESS);
237 return(SMS_PERM);
238}
239
240
241/* access_service - allow access if user is on ACL of service. Don't
242 * allow access if a wildcard is used.
243 */
244
245access_service(q, argv, cl)
246 struct query *q;
247 char *argv[];
248 client *cl;
249##{
250## int acl_id, rowcount;
251## char *name, acl_type[9];
252 int client_id, status;
253 char *client_type;
254
255 name = argv[0];
256## repeat retrieve (acl_id = servers.#acl_id, acl_type = servers.#acl_type)
257## where servers.#name = uppercase(@name)
258## inquire_equel(rowcount = "rowcount")
259 if (rowcount > 1)
260 return(SMS_PERM);
261
262 /* parse client structure */
263 if ((status = get_client(cl, &client_type, &client_id)) != SMS_SUCCESS)
264 return(status);
265
266 /* check for client in access control list */
267 status = find_member(acl_type, acl_id, client_type, client_id, 0);
268 if (!status) return(SMS_PERM);
269
270 return(SMS_SUCCESS);
271##}
272
273
274
275/* access_filesys - verify that client is owner or on owners list of filesystem
276 * named by argv[0]
277 */
278
279access_filesys(q, argv, cl)
280 struct query *q;
281 char *argv[];
282 client *cl;
283##{
284## int rowcount, users_id, list_id;
285## char *name;
286 int status, client_id;
287 char *client_type;
288
289 name = argv[0];
290## repeat retrieve (users_id = filesys.owner, list_id = filesys.owners)
291## where filesys.label = @name
292## inquire_equel(rowcount = "rowcount")
293
294 if (rowcount != 1)
295 return(SMS_PERM);
296 if (users_id == cl->users_id)
297 return(SMS_SUCCESS);
298 if ((status = get_client(cl, &client_type, &client_id)) != SMS_SUCCESS)
299 return(status);
300 status = find_member("LIST", list_id, client_type, client_id, 0);
301 if (status)
302 return(SMS_SUCCESS);
303 return(SMS_PERM);
304##}
305
306
307\f
308/* Setup Routines */
309
310/* Setup routine for add_user
311 *
312 * Inputs: argv[0] - login
313 * argv[1] - uid
314 *
315 * Description:
316 *
317 * - if argv[1] == UNIQUE_UID then set argv[1] = next(uid)
318 * - if argv[0] == UNIQUE_LOGIN then set argv[0] = "#<uid>"
319 */
320
321setup_ausr(q, argv, cl)
322 struct query *q;
323 register char *argv[];
324 client *cl;
325##{
326## int nuid, rowcount;
327
328 if (!strcmp(argv[1], UNIQUE_UID) || atoi(argv[1]) == -1) {
329 if (set_next_object_id("uid", "users"))
330 return(SMS_INGRES_ERR);
331## repeat retrieve (nuid = values.value) where values.name = "uid"
332## inquire_equel(rowcount = "rowcount")
333 if (rowcount != 1)
334 return(SMS_INTERNAL);
335 sprintf(argv[1], "%d", nuid);
336 }
337
338 if (!strcmp(argv[0], UNIQUE_LOGIN) || atoi(argv[1]) == -1) {
339 sprintf(argv[0], "#%s", argv[1]);
340 }
341
342 return(SMS_SUCCESS);
343##}
344
345
346/* setup_dusr - verify that the user is no longer being referenced
347 * and may safely be deleted.
348 */
349
350int setup_dusr(q, argv)
351 struct query *q;
352 char **argv;
353##{
354## int flag, id;
355
356 id = *(int *)argv[0];
357
358 /* For now, only allow users to be deleted if their status is 0 */
359## repeat retrieve (flag = u.status) where u.users_id = @id
360 if (flag != 0)
361 return(SMS_IN_USE);
362
363## repeat delete nfsquota where nfsquota.users_id = @id
364## repeat retrieve (flag = any(members.member_id where members.member_id=@id
365## and members.member_type = "USER"))
366 if (flag)
367 return(SMS_IN_USE);
368## repeat retrieve (flag = any(filesys.label where filesys.owner=@id))
369 if (flag)
370 return(SMS_IN_USE);
371## repeat retrieve (flag = any(list.name where list.acl_id=@id and
372## list.acl_type = "USER"))
373 if (flag)
374 return(SMS_IN_USE);
375## repeat retrieve (flag = any(servers.name where servers.acl_id=@id and
376## servers.acl_type = "USER"))
377 if (flag)
378 return(SMS_IN_USE);
379## repeat retrieve (flag=any(hostaccess.acl_id where hostaccess.acl_id=@id and
380## hostaccess.acl_type = "USER"))
381 if (flag)
382 return(SMS_IN_USE);
383 else
384 return(SMS_SUCCESS);
385##}
386
387
388/* setup_spop: verify that there is already a valid POP machine_id in the
389 * pop_id field. Also take care of keeping track of the post office usage.
390 */
391int setup_spop(q, argv)
392struct query *q;
393char **argv;
394##{
395## int id, mid, flag;
396## char type[9];
397
398 id = *(int *)argv[0];
399## repeat retrieve (type = u.potype, mid = u.pop_id,
400## flag = any(machine.name where machine.mach_id = u.pop_id
401## and u.pop_id != 0 and u.users_id = @id))
402## where u.users_id = @id
403 if (!flag)
404 return(SMS_MACHINE);
405 if (strcmp(strtrim(type), "POP"))
406 set_pop_usage(mid, 1);
407 return(SMS_SUCCESS);
408##}
409
410
411/* setup_dpob: Take care of keeping track of the post office usage.
412 */
413int setup_dpob(q, argv)
414struct query *q;
415char **argv;
416##{
417## int id, user;
418## char type[9];
419
420 user = *(int *)argv[0];
421## repeat retrieve (type = u.potype, id = u.pop_id)
422## where u.users_id = @user
423
424 if (!strcmp(strtrim(type), "POP"))
425 set_pop_usage(id, -1);
426 return(SMS_SUCCESS);
427##}
428
429
430/* setup_dmac - verify that the machine is no longer being referenced
431 * and may safely be deleted.
432 */
433
434int setup_dmac(q, argv)
435 struct query *q;
436 char **argv;
437##{
438## int flag, id;
439
440 id = *(int *)argv[0];
441## repeat retrieve (flag = any(users.login where users.potype = "POP"
442## and users.pop_id=@id))
443 if (flag)
444 return(SMS_IN_USE);
445## repeat retrieve (flag = any(serverhosts.mach_id
446## where serverhosts.mach_id=@id))
447 if (flag)
448 return(SMS_IN_USE);
449## repeat retrieve (flag = any(nfsphys.mach_id where nfsphys.mach_id=@id))
450 if (flag)
451 return(SMS_IN_USE);
452## repeat retrieve (flag = any(hostaccess.mach_id where hostaccess.mach_id=@id))
453 if (flag)
454 return(SMS_IN_USE);
455## repeat retrieve (flag = any(printcap.mach_id where printcap.mach_id=@id))
456 if (flag)
457 return(SMS_IN_USE);
458
459## repeat delete mcmap where mcmap.mach_id = @id
460 return(SMS_SUCCESS);
461##}
462
463
464/* setup_dclu - verify that the cluster is no longer being referenced
465 * and may safely be deleted.
466 */
467
468int setup_dclu(q, argv)
469 struct query *q;
470 char **argv;
471##{
472## int flag, id;
473
474 id = *(int *)argv[0];
475## repeat retrieve (flag = any(mcmap.mach_id where mcmap.clu_id=@id))
476 if (flag)
477 return(SMS_IN_USE);
478## repeat retrieve (flag = any(svc.clu_id where svc.clu_id=@id))
479 if (flag)
480 return(SMS_IN_USE);
481 else
482 return(SMS_SUCCESS);
483##}
484
485
486/* setup_alis - if argv[5] is non-zero and argv[6] is UNIQUE_ID, then allocate
487 * a new gid and put it in argv[6]. Otherwise if argv[6] is UNIQUE_ID but
488 * argv[5] is not, then remember that UNIQUE_ID is being stored by putting
489 * a -1 there. Remember that this is also used for ulis, with the indexes
490 * at 6 & 7.
491 */
492
493int setup_alis(q, argv)
494struct query *q;
495char **argv;
496##{
497## int ngid;
498 char *malloc();
499 int idx;
500
501 if (!strcmp(q->shortname, "alis"))
502 idx = 6;
503 else if (!strcmp(q->shortname, "ulis"))
504 idx = 7;
505
506 if (!strcmp(argv[idx], UNIQUE_GID) || atoi(argv[idx]) == -1) {
507 if (atoi(argv[idx - 1])) {
508 if (set_next_object_id("gid", "list"))
509 return(SMS_INGRES_ERR);
510## repeat retrieve (ngid = values.value) where values.name = "gid"
511 sprintf(argv[idx], "%d", ngid);
512 } else {
513 strcpy(argv[idx], "-1");
514 }
515 }
516
517 return(SMS_SUCCESS);
518##}
519
520
521/* setup_dlist - verify that the list is no longer being referenced
522 * and may safely be deleted.
523 */
524
525int setup_dlis(q, argv)
526 struct query *q;
527 char **argv;
528##{
529## int flag, id;
530
531 id = *(int *)argv[0];
532## repeat retrieve (flag = any(members.member_id where members.member_id=@id
533## and members.member_type = "LIST"))
534 if (flag)
535 return(SMS_IN_USE);
536## repeat retrieve (flag = any(members.member_id where members.list_id=@id))
537 if (flag)
538 return(SMS_IN_USE);
539## repeat retrieve (flag = any(filesys.label where filesys.owners=@id))
540 if (flag)
541 return(SMS_IN_USE);
542## repeat retrieve (flag = any(capacls.tag where capacls.list_id=@id))
543 if (flag)
544 return(SMS_IN_USE);
545## repeat retrieve (flag = any(list.name where list.acl_id=@id and
546## list.acl_type = "LIST" and list.list_id != @id))
547 if (flag)
548 return(SMS_IN_USE);
549## repeat retrieve (flag = any(servers.name where servers.acl_id=@id and
550## servers.acl_type = "LIST"))
551 if (flag)
552 return(SMS_IN_USE);
553## repeat retrieve (flag=any(hostaccess.acl_id where hostaccess.acl_id=@id and
554## hostaccess.acl_type = "LIST"))
555 if (flag)
556 return(SMS_IN_USE);
557## repeat retrieve (flag = any(zephyr.class
558## where zephyr.xmt_type = "LIST" and zephyr.xmt_id = @id or
559## zephyr.sub_type = "LIST" and zephyr.sub_id = @id or
560## zephyr.iws_type = "LIST" and zephyr.iws_id = @id or
561## zephyr.iui_type = "LIST" and zephyr.iui_id = @id))
562 if (flag)
563 return(SMS_IN_USE);
564 else
565 return(SMS_SUCCESS);
566##}
567
568
569/* setup_dsin - verify that the service is no longer being referenced
570 * and may safely be deleted.
571 */
572
573int setup_dsin(q, argv)
574 struct query *q;
575 char **argv;
576##{
577## int flag;
578## char *name;
579
580 name = argv[0];
581## repeat retrieve (flag = any(serverhosts.service
582## where serverhosts.service=uppercase(@name)))
583 if (flag)
584 return(SMS_IN_USE);
585## repeat retrieve (flag = servers.inprogress) where servers.#name = @name
586 if (flag)
587 return(SMS_IN_USE);
588 else
589 return(SMS_SUCCESS);
590##}
591
592
593/* setup_dshi - verify that the service-host is no longer being referenced
594 * and may safely be deleted.
595 */
596
597int setup_dshi(q, argv)
598 struct query *q;
599 char **argv;
600##{
601## int flag, id;
602## char *name;
603
604 name = argv[0];
605 id = *(int *)argv[1];
606## repeat retrieve (flag=serverhosts.inprogress)
607## where serverhosts.service=uppercase(@name) and serverhosts.mach_id=@id
608 if (flag)
609 return(SMS_IN_USE);
610 else
611 return(SMS_SUCCESS);
612##}
613
614
615/**
616 ** setup_add_filesys - verify existance of referenced file systems
617 **
618 ** Inputs: Add
619 ** argv[1] - type
620 ** argv[2] - mach_id
621 ** argv[3] - name
622 ** argv[5] - access
623 **
624 ** Description:
625 ** - for type = RVD:
626 ** * allow anything
627 ** - for type = NFS:
628 ** * extract directory prefix from name
629 ** * verify mach_id/dir in nfsphys
630 ** * verify access in {r, w, R, W}
631 **
632 ** Side effect: sets variable var_phys_id to the ID of the physical
633 ** filesystem (nfsphys_id for NFS, 0 for RVD)
634 **
635 ** Errors:
636 ** SMS_NFS - specified directory not exported
637 ** SMS_FILESYS_ACCESS - invalid filesys access
638 **
639 **/
640
641##static int var_phys_id;
642
643setup_afil(q, argv)
644 struct query *q;
645 char *argv[];
646{
647 char *type;
648 int mach_id;
649 char *name;
650 char *access;
651
652 type = argv[1];
653 mach_id = *(int *)argv[2];
654 name = argv[3];
655 access = argv[5];
656 var_phys_id = 0;
657
658 if (!strcmp(type, "NFS"))
659 return (check_nfs(mach_id, name, access));
660 else
661 return(SMS_SUCCESS);
662}
663
664
665/* Verify the arguments, depending on the FStype. Also, if this is an
666 * NFS filesystem, then update any quotas for that filesystem to reflect
667 * the new phys_id.
668 */
669
670setup_ufil(q, argv)
671 struct query *q;
672 char *argv[];
673##{
674 int mach_id, status;
675 char *type, *name, *access;
676## int fid;
677
678 type = argv[2];
679 mach_id = *(int *)argv[3];
680 name = argv[4];
681 access = argv[6];
682 var_phys_id = 0;
683
684 if (!strcmp(type, "NFS")) {
685 status = check_nfs(mach_id, name, access);
686 fid = *(int *)argv[0];
687## replace nfsquota (phys_id = var_phys_id) where nfsquota.filsys_id = fid
688 return(status);
689 } else
690 return(SMS_SUCCESS);
691##}
692
693
694/* Find the NFS physical partition that the named directory is on.
695 * This is done by comparing the dir against the mount point of the
696 * partition. To make sure we get the correct match when there is
697 * more than one, we sort the query in reverse order by dir name.
698 */
699
700##check_nfs(mach_id, name, access)
701## int mach_id;
702 char *name;
703 char *access;
704##{
705## char dir[32];
706 char caccess;
707 register int status;
708 register char *cp1;
709 register char *cp2;
710
711 caccess = (isupper(*access)) ? tolower(*access) : *access;
712 if (caccess != 'r' && caccess != 'w') return(SMS_FILESYS_ACCESS);
713
714 status = SMS_NFS;
715## range of np is nfsphys
716## repeat retrieve (var_phys_id = np.#nfsphys_id, dir = trim(np.#dir))
717## where np.#mach_id = @mach_id sort by #dir:d {
718 cp1 = name;
719 cp2 = dir;
720 while (*cp2) {
721 if (*cp1++ != *cp2) break;
722 cp2++;
723 }
724 if (*cp2 == 0) {
725 status = SMS_SUCCESS;
726## endretrieve
727 }
728## }
729
730 return(status);
731##}
732
733
734/* setup_dfil: free any quota records associated with a filesystem
735 * when it is deleted.
736 */
737
738setup_dfil(q, argv, cl)
739 struct query *q;
740 char **argv;
741 client *cl;
742##{
743## int id;
744
745 id = *(int *)argv[0];
746## range of q is nfsquota
747## range of fs is filesys
748## range of n is nfsphys
749## repeat replace n (allocated=n.allocated-sum(q.quota where q.filsys_id=@id))
750## where n.nfsphys_id = fs.phys_id and fs.filsys_id = @id
751
752## repeat delete q where q.filsys_id = @id
753 return(SMS_SUCCESS);
754##}
755
756
757/* setup_dnfp: check to see that the nfs physical partition does not have
758 * any filesystems assigned to it before allowing it to be deleted.
759 */
760
761setup_dnfp(q, argv, cl)
762 struct query *q;
763 char **argv;
764 client *cl;
765##{
766## int id, exists;
767
768 id = *(int *)argv[0];
769## repeat retrieve (exists = any(filesys.label where filesys.phys_id = @id))
770 if (exists)
771 return(SMS_IN_USE);
772 return(SMS_SUCCESS);
773##}
774
775
776/* setup_dnfq: Remove allocation from nfsphys before deleting quota.
777 * argv[0] = filsys_id
778 * argv[1] = users_id
779 */
780
781setup_dnfq(q, argv, cl)
782 struct query *q;
783 char **argv;
784 client *cl;
785##{
786## int quota, fs, user;
787
788 fs = *(int *)argv[0];
789 user = *(int *)argv[1];
790
791## range of q is nfsquota
792## repeat retrieve (quota = q.#quota) where q.users_id = @user and
793## q.filsys_id = @fs
794## repeat replace nfsphys (allocated = nfsphys.allocated - @quota)
795## where nfsphys.nfsphys_id = filesys.#phys_id and filesys.filsys_id = @fs
796 return(SMS_SUCCESS);
797##}
798
799
800\f
801/* FOLLOWUP ROUTINES */
802
803/* generic set_modtime routine. This takes the table name from the query,
804 * and will update the modtime, modby, and modwho fields in the entry in
805 * the table whose name field matches argv[0].
806 */
807
808set_modtime(q, argv, cl)
809 struct query *q;
810 char *argv[];
811 client *cl;
812##{
813## char *name, *entity, *table;
814## int who;
815
816 entity = cl->entity;
817 who = cl->users_id;
818 table = q->rtable;
819 name = argv[0];
820
821## replace table (modtime = "now", modby = who, modwith = entity)
822## where table.#name = name
823 return(SMS_SUCCESS);
824##}
825
826/* generic set_modtime_by_id routine. This takes the table name from
827 * the query, and the id name from the validate record,
828 * and will update the modtime, modby, and modwho fields in the entry in
829 * the table whose id matches argv[0].
830 */
831
832set_modtime_by_id(q, argv, cl)
833 struct query *q;
834 char **argv;
835 client *cl;
836##{
837## char *entity, *table, *id_name;
838## int who, id;
839
840 entity = cl->entity;
841 who = cl->users_id;
842 table = q->rtable;
843 id_name = q->validate->object_id;
844
845 id = *(int *)argv[0];
846## replace table (modtime = "now", modby = who, modwith = entity)
847## where table.id_name = id
848 return(SMS_SUCCESS);
849##}
850
851
852/* Sets the finger modtime on a user record. The users_id will be in argv[0].
853 */
854
855set_finger_modtime(q, argv, cl)
856 struct query *q;
857 char *argv[];
858 client *cl;
859##{
860## int users_id, who;
861## char *entity;
862
863 entity = cl->entity;
864 who = cl->users_id;
865 users_id = *(int *)argv[0];
866
867## repeat replace u (fmodtime = "now", fmodby = @who, fmodwith = @entity)
868## where u.#users_id = @users_id
869 return(SMS_SUCCESS);
870##}
871
872
873/* Sets the pobox modtime on a user record. The users_id will be in argv[0].
874 */
875
876set_pobox_modtime(q, argv, cl)
877 struct query *q;
878 char **argv;
879 client *cl;
880##{
881## int users_id, who;
882## char *entity;
883
884 entity = cl->entity;
885 who = cl->users_id;
886 users_id = *(int *)argv[0];
887
888## repeat replace users (pmodtime = "now", pmodby = @who, pmodwith = @entity)
889## where users.#users_id = @users_id
890 return(SMS_SUCCESS);
891##}
892
893
894/* Like set_modtime, but uppercases the name first.
895 */
896
897set_uppercase_modtime(q, argv, cl)
898 struct query *q;
899 char **argv;
900 client *cl;
901##{
902## char *name, *entity, *table;
903## int who;
904
905 entity = cl->entity;
906 who = cl->users_id;
907 table = q->rtable;
908 name = argv[0];
909
910## replace table (modtime = "now", modby = who, modwith = entity)
911## where table.#name = uppercase(name)
912 return(SMS_SUCCESS);
913##}
914
915
916/* Sets the modtime on the machine whose mach_id is in argv[0]. This routine
917 * is necessary for add_machine_to_cluster becuase the table that query
918 * operates on is "mcm", not "machine".
919 */
920
921set_mach_modtime_by_id(q, argv, cl)
922 struct query *q;
923 char **argv;
924 client *cl;
925##{
926## char *entity;
927## int who, id;
928
929 entity = cl->entity;
930 who = cl->users_id;
931
932 id = *(int *)argv[0];
933## range of m is machine
934## repeat replace m (modtime = "now", modby = @who, modwith = @entity)
935## where m.mach_id = @id
936 return(SMS_SUCCESS);
937##}
938
939
940/* Sets the modtime on the cluster whose mach_id is in argv[0]. This routine
941 * is necessary for add_cluster_data and delete_cluster_data becuase the
942 * table that query operates on is "svc", not "cluster".
943 */
944
945set_cluster_modtime_by_id(q, argv, cl)
946 struct query *q;
947 char **argv;
948 client *cl;
949##{
950## char *entity;
951## int who, id;
952
953 entity = cl->entity;
954 who = cl->users_id;
955
956 id = *(int *)argv[0];
957## range of c is cluster
958## repeat replace c (modtime = "now", modby = @who, modwith = @entity)
959## where c.clu_id = @id
960 return(SMS_SUCCESS);
961##}
962
963
964/* sets the modtime on the serverhost where the service name is in argv[0]
965 * and the mach_id is in argv[1].
966 */
967
968set_serverhost_modtime(q, argv, cl)
969 struct query *q;
970 char **argv;
971 client *cl;
972##{
973## char *entity, *serv;
974## int who, id;
975
976 entity = cl->entity;
977 who = cl->users_id;
978
979 serv = argv[0];
980 id = *(int *)argv[1];
981## repeat replace sh (modtime = "now", modby = @who, modwith = @entity)
982## where sh.service = uppercase(@serv) and sh.mach_id = @id
983 return(SMS_SUCCESS);
984##}
985
986
987/* sets the modtime on the nfsphys where the mach_id is in argv[0] and the
988 * directory name is in argv[1].
989 */
990
991set_nfsphys_modtime(q, argv, cl)
992 struct query *q;
993 char **argv;
994 client *cl;
995##{
996## char *entity, *dir;
997## int who, id;
998
999 entity = cl->entity;
1000 who = cl->users_id;
1001
1002 id = *(int *)argv[0];
1003 dir = argv[1];
1004## repeat replace np (modtime = "now", modby = @who, modwith = @entity)
1005## where np.#dir = @dir and np.mach_id = @id
1006 return(SMS_SUCCESS);
1007##}
1008
1009
1010/* sets the modtime on a filesystem, where argv[0] contains the filesys
1011 * label.
1012 */
1013
1014set_filesys_modtime(q, argv, cl)
1015 struct query *q;
1016 char *argv[];
1017 client *cl;
1018##{
1019## char *label, *entity;
1020## int who;
1021
1022 entity = cl->entity;
1023 who = cl->users_id;
1024
1025 label = argv[0];
1026 if (!strcmp(q->shortname, "ufil"))
1027 label = argv[1];
1028
1029## repeat replace fs (modtime = "now", modby = @who, modwith = @entity,
1030## #phys_id = @var_phys_id) where fs.#label = @label
1031 return(SMS_SUCCESS);
1032##}
1033
1034
1035/* sets the modtime on a zephyr class, where argv[0] contains the class
1036 * name.
1037 */
1038
1039set_zephyr_modtime(q, argv, cl)
1040 struct query *q;
1041 char *argv[];
1042 client *cl;
1043##{
1044## char *class, *entity;
1045## int who;
1046
1047 entity = cl->entity;
1048 who = cl->users_id;
1049
1050 class = argv[0];
1051
1052## repeat replace z (modtime = "now", modby = @who, modwith = @entity)
1053## where z.#class = @class
1054 return(SMS_SUCCESS);
1055##}
1056
1057
1058/* fixes the modby field. This will be the second to last thing in the
1059 * argv, the argv length is determined from the query structure. It is
1060 * passed as a pointer to an integer. This will either turn it into a
1061 * username, or # + the users_id.
1062 */
1063followup_fix_modby(q, sq, v, action, actarg, cl)
1064 struct query *q;
1065 register struct save_queue *sq;
1066 struct validate *v;
1067 register int (*action)();
1068 register int actarg;
1069 client *cl;
1070##{
1071 register int i, j;
1072 char **argv, *malloc();
1073## int id, rowcount;
1074## char *name;
1075
1076 i = q->vcnt - 2;
1077 while (sq_get_data(sq, &argv)) {
1078 id = atoi(argv[i]);
1079 free(argv[i]);
1080 argv[i] = malloc(9);
1081 name = argv[i];
1082## repeat retrieve (name = users.login) where users.users_id = @id
1083## inquire_equel(rowcount = "rowcount")
1084 if (rowcount != 1) {
1085 sprintf(argv[i], "#%d", id);
1086 }
1087 (*action)(q->vcnt, argv, actarg);
1088 for (j = 0; j < q->vcnt; j++)
1089 free(argv[j]);
1090 free(argv);
1091 }
1092 sq_destroy(sq);
1093 return(SMS_SUCCESS);
1094##}
1095
1096
1097/**
1098 ** followup_ausr - add finger and pobox entries, set_user_modtime
1099 **
1100 ** Inputs:
1101 ** argv[0] - login (add_user)
1102 ** argv[3] - last name
1103 ** argv[4] - first name
1104 ** argv[5] - middle name
1105 **
1106 **/
1107
1108followup_ausr(q, argv, cl)
1109 struct query *q;
1110 char *argv[];
1111 client *cl;
1112##{
1113## int who;
1114## char *login, *entity;
1115## char fullname[129];
1116
1117 login = argv[0];
1118 who = cl->users_id;
1119 entity = cl->entity;
1120
1121 /* build fullname */
1122 if (strlen(argv[4]) && strlen(argv[5]))
1123 sprintf(fullname, "%s %s %s", argv[4], argv[5], argv[3]);
1124 else if (strlen(argv[4]))
1125 sprintf(fullname, "%s %s", argv[4], argv[3]);
1126 else
1127 sprintf(fullname, "%s", argv[3]);
1128
1129 /* create finger entry, pobox & set modtime on user */
1130## repeat replace u (modtime = "now", modby=@who, modwith=@entity,
1131## #fullname=@fullname, mit_affil = u.mit_year,
1132## fmodtime="now", fmodby=@who, fmodwith=@entity,
1133## potype="NONE", pmodtime="now", pmodby=@who, pmodwith=@entity)
1134## where u.#login = @login
1135
1136 return(SMS_SUCCESS);
1137##}
1138
1139
1140/* followup_gpob: fixes argv[2] based on the IDs currently there and the
1141 * type in argv[1]. Then completes the upcall to the user.
1142 *
1143 * argv[2] is of the form "123:234" where the first integer is the machine
1144 * ID if it is a pop box, and the second is the string ID if it is an SMTP
1145 * box. argv[1] should be "POP", "SMTP", or "NONE". Boxes of type NONE
1146 * are skipped.
1147 */
1148
1149followup_gpob(q, sq, v, action, actarg, cl)
1150 register struct query *q;
1151 register struct save_queue *sq;
1152 register struct validate *v;
1153 register int (*action)();
1154 int actarg;
1155 client *cl;
1156##{
1157 char **argv, *index();
1158 char *ptype, *p;
1159## char box[129], *name;
1160## int mid, sid, rowcount;
1161
1162 /* for each row */
1163 while (sq_get_data(sq, &argv)) {
1164 sms_trim_args(2, argv);
1165 ptype = argv[1];
1166 p = index(argv[2], ':');
1167 *p++ = 0;
1168 mid = atoi(argv[2]);
1169 sid = atoi(p);
1170 free(argv[2]);
1171
1172 if (!strcmp(ptype, "POP")) {
1173## repeat retrieve (box=machine.#name) where machine.mach_id=@mid
1174## inquire_equel(rowcount = "rowcount")
1175 if (rowcount != 1)
1176 return(SMS_MACHINE);
1177 } else if (!strcmp(ptype, "SMTP")) {
1178## repeat retrieve (box=strings.string) where strings.string_id=@sid
1179## inquire_equel(rowcount = "rowcount")
1180 if (rowcount != 1)
1181 return(SMS_STRING);
1182 } else /* ptype == "NONE" */ {
1183 goto skip;
1184 }
1185
1186 if (!strcmp(q->shortname, "gpob")) {
1187 sid = atoi(argv[4]);
1188 free(argv[4]);
1189 argv[4] = malloc(9);
1190 name = argv[4];
1191## repeat retrieve (name = users.login) where users.users_id = @sid
1192## inquire_equel(rowcount = "rowcount")
1193 if (rowcount != 1)
1194 sprintf(name, "#%d", sid);
1195 }
1196
1197 argv[2] = box;
1198 (*action)(q->vcnt, argv, actarg);
1199 skip:
1200 /* free saved data */
1201 free(argv[0]);
1202 free(argv[1]);
1203 free(argv);
1204 }
1205
1206 sq_destroy(sq);
1207 return (SMS_SUCCESS);
1208##}
1209
1210
1211/* followup_glin: fix the ace_name in argv[8]. argv[7] will contain the
1212 * ace_type: "LIST", "USER", or "NONE". Decode the id in argv[8] into the
1213 * proper name based on the type, and repace that string in the argv.
1214 * Also fixes the modby field by called followup_fix_modby.
1215 */
1216
1217followup_glin(q, sq, v, action, actarg, cl)
1218 register struct query *q;
1219 register struct save_queue *sq;
1220 register struct validate *v;
1221 register int (*action)();
1222 int actarg;
1223 client *cl;
1224##{
1225 char **argv, *malloc(), *realloc(), *type;
1226## char *name;
1227## int id, rowcount;
1228 int i, idx;
1229
1230 idx = 8;
1231 if (!strcmp(q->shortname, "gsin"))
1232 idx = 12;
1233
1234 while (sq_get_data(sq, &argv)) {
1235 sms_trim_args(q->vcnt, argv);
1236
1237 id = atoi(argv[i = q->vcnt - 2]);
1238 free(argv[i]);
1239 name = argv[i] = malloc(9);
1240## repeat retrieve (name = users.login) where users.users_id = @id
1241## inquire_equel(rowcount = "rowcount")
1242 if (rowcount != 1)
1243 sprintf(argv[i], "#%d", id);
1244
1245 id = atoi(argv[idx]);
1246 type = argv[idx - 1];
1247 if ((name = malloc(33)) == NULL)
1248 return(SMS_NO_MEM);
1249
1250 if (!strcmp(type, "LIST")) {
1251## repeat retrieve (name = list.#name) where list.list_id = @id
1252## inquire_equel(rowcount = "rowcount")
1253 if (rowcount != 1)
1254 strcpy(name, "???");
1255 } else if (!strcmp(type, "USER")) {
1256## repeat retrieve (name = users.login) where users.users_id = @id
1257## inquire_equel(rowcount = "rowcount")
1258 if (rowcount != 1)
1259 strcpy(name, "???");
1260 } else if (!strcmp(type, "NONE")) {
1261 strcpy(name, "NONE");
1262 } else
1263 strcpy(name, "???");
1264 free(argv[idx]);
1265 argv[idx] = name;
1266
1267 if (!strcmp(q->shortname, "glin") && atoi(argv[6]) == -1) {
1268 argv[6] = realloc(argv[6], strlen(UNIQUE_GID) + 1);
1269 strcpy(argv[6], UNIQUE_GID);
1270 }
1271
1272 /* send the data */
1273 (*action)(q->vcnt, argv, actarg);
1274
1275 /* free saved data */
1276 for (i = 0; i < q->vcnt; i++)
1277 free(argv[i]);
1278 free(argv);
1279 }
1280
1281 sq_destroy(sq);
1282 return (SMS_SUCCESS);
1283##}
1284
1285
1286/** followup_amtl - followup for amtl and dmfl; when adding a list
1287 ** member to a maillist, make member list a maillist also
1288 ** unless list is a user-group.
1289 ** Then set_list_modtime_by_id.
1290 **
1291 ** Inputs:
1292 ** argv[0] - list_id
1293 ** argv[1] - member_type
1294 ** argv[2] - member_id
1295 **
1296 **/
1297
1298followup_amtl(q, argv, cl)
1299 struct query *q;
1300 char *argv[];
1301 client *cl;
1302##{
1303## int list_id;
1304## int member_id;
1305## int exists, who;
1306## char *entity;
1307
1308 list_id = *(int *)argv[0];
1309 entity = cl->entity;
1310 who = cl->users_id;
1311
1312## range of l is list
1313## repeat replace l (modtime = "now", modby = @who, modwith = @entity)
1314## where l.#list_id = @list_id
1315
1316 /* if query is not amtl or if member_type is not LIST then return */
1317 if (bcmp(q->shortname, "amtl", 4) || bcmp(argv[1], "LIST", 4))
1318 return(SMS_SUCCESS);
1319
1320 member_id = *(int *)argv[2];
1321
1322 /* is parent list a mailing list? */
1323## repeat retrieve (exists = l.maillist) where l.#list_id=@list_id
1324 if (!exists)
1325 return(SMS_SUCCESS);
1326
1327 /* list is not a user-group; add list to maillist table */
1328## repeat replace l (maillist = 1) where l.#list_id = @member_id
1329 return(SMS_SUCCESS);
1330##}
1331
1332
1333/* followup_anfq: Add allocation to nfsphys after creating quota.
1334 * argv[0] = filsys_id
1335 * argv[2] = ascii(quota)
1336 */
1337
1338followup_anfq(q, argv, cl)
1339 struct query *q;
1340 char **argv;
1341 client *cl;
1342##{
1343## int quota, user, fs, who;
1344## char *entity;
1345
1346 fs = *(int *)argv[0];
1347 user = *(int *)argv[1];
1348 quota = atoi(argv[2]);
1349 who = cl->users_id;
1350 entity = cl->entity;
1351
1352## repeat replace nq (modtime = "now", modby = @who, modwith = @entity)
1353## where nq.filsys_id = @fs and nq.users_id = @user
1354## repeat replace nfsphys (allocated = nfsphys.allocated + @quota)
1355## where nfsphys.nfsphys_id = filesys.#phys_id and filesys.filsys_id = @fs
1356 return(SMS_SUCCESS);
1357##}
1358
1359
1360/* followup_gzcl:
1361 */
1362
1363followup_gzcl(q, sq, v, action, actarg, cl)
1364 register struct query *q;
1365 register struct save_queue *sq;
1366 register struct validate *v;
1367 register int (*action)();
1368 int actarg;
1369 client *cl;
1370##{
1371## char *name;
1372## int rowcount, id;
1373 char **argv;
1374 int i;
1375
1376 while (sq_get_data(sq, &argv)) {
1377 sms_trim_args(q->vcnt, argv);
1378
1379 id = atoi(argv[i = q->vcnt - 2]);
1380 free(argv[i]);
1381 name = argv[i] = malloc(9);
1382## repeat retrieve (name = users.login) where users.users_id = @id
1383## inquire_equel(rowcount = "rowcount")
1384 if (rowcount != 1)
1385 sprintf(argv[i], "#%d", id);
1386
1387 for (i = 1; i < 8; i+=2) {
1388 id = atoi(argv[i+1]);
1389 free(argv[i+1]);
1390 if ((name = argv[i+1] = malloc(33)) == NULL)
1391 return(SMS_NO_MEM);
1392 if (!strcmp(argv[i], "LIST")) {
1393## repeat retrieve (name = list.#name) where list.list_id = @id
1394## inquire_equel(rowcount = "rowcount")
1395 if (rowcount != 1)
1396 strcpy(name, "???");
1397 } else if (!strcmp(argv[i], "USER")) {
1398## repeat retrieve (name = users.login) where users.users_id = @id
1399## inquire_equel(rowcount = "rowcount")
1400 if (rowcount != 1)
1401 strcpy(name, "???");
1402 } else if (!strcmp(argv[i], "NONE")) {
1403 strcpy(name, "NONE");
1404 } else {
1405 strcpy(name, "???");
1406 }
1407 }
1408
1409 /* send the data */
1410 (*action)(q->vcnt, argv, actarg);
1411
1412 /* free saved data */
1413 for (i = 0; i < q->vcnt; i++)
1414 free(argv[i]);
1415 free(argv);
1416 }
1417 sq_destroy(sq);
1418 return(SMS_SUCCESS);
1419##}
1420
1421
1422/* followup_gsha:
1423 */
1424
1425followup_gsha(q, sq, v, action, actarg, cl)
1426 register struct query *q;
1427 register struct save_queue *sq;
1428 register struct validate *v;
1429 register int (*action)();
1430 int actarg;
1431 client *cl;
1432##{
1433## char *name;
1434## int rowcount, id;
1435 char **argv;
1436 int i;
1437
1438 while (sq_get_data(sq, &argv)) {
1439 sms_trim_args(q->vcnt, argv);
1440
1441 id = atoi(argv[4]);
1442 free(argv[4]);
1443 name = argv[4] = malloc(9);
1444## repeat retrieve (name = users.login) where users.users_id = @id
1445## inquire_equel(rowcount = "rowcount")
1446 if (rowcount != 1)
1447 sprintf(argv[4], "#%d", id);
1448
1449 id = atoi(argv[2]);
1450 free(argv[2]);
1451 if ((name = argv[2] = malloc(33)) == NULL)
1452 return(SMS_NO_MEM);
1453 if (!strcmp(argv[1], "LIST")) {
1454## repeat retrieve (name = list.#name) where list.list_id = @id
1455## inquire_equel(rowcount = "rowcount")
1456 if (rowcount != 1)
1457 strcpy(name, "???");
1458 } else if (!strcmp(argv[1], "USER")) {
1459## repeat retrieve (name = users.login) where users.users_id = @id
1460## inquire_equel(rowcount = "rowcount")
1461 if (rowcount != 1)
1462 strcpy(name, "???");
1463 } else if (!strcmp(argv[1], "NONE")) {
1464 strcpy(name, "NONE");
1465 } else {
1466 strcpy(name, "???");
1467 }
1468
1469 /* send the data */
1470 (*action)(q->vcnt, argv, actarg);
1471
1472 /* free saved data */
1473 for (i = 0; i < q->vcnt; i++)
1474 free(argv[i]);
1475 free(argv);
1476 }
1477 sq_destroy(sq);
1478 return(SMS_SUCCESS);
1479##}
1480
1481
1482\f
1483/* Special query routines */
1484
1485/* set_pobox - this does all of the real work.
1486 * argv = user_id, type, box
1487 * if type is POP, then box should be a machine, and its ID should be put in
1488 * pop_id. If type is SMTP, then box should be a string and its ID should
1489 * be put in box_id. If type is NONE, then box doesn't matter.
1490 */
1491
1492int set_pobox(q, argv, cl)
1493 struct query *q;
1494 char **argv;
1495 client *cl;
1496##{
1497## int user, id, rowcount;
1498## char *box, potype[9];
1499
1500 box = argv[2];
1501 user = *(int *)argv[0];
1502
1503## repeat retrieve (id = users.pop_id, potype = users.#potype)
1504## where users.users_id = @user
1505 if (!strcmp(strtrim(potype), "POP"))
1506 set_pop_usage(id, -1);
1507
1508 if (!strcmp(argv[1], "POP")) {
1509## repeat retrieve (id=machine.mach_id) where machine.name=uppercase(@box)
1510## inquire_equel(rowcount = "rowcount")
1511 if (rowcount != 1)
1512 return(SMS_MACHINE);
1513## repeat replace users (#potype = "POP", pop_id = @id)
1514## where users.users_id = @user
1515 set_pop_usage(id, 1);
1516 } else if (!strcmp(argv[1], "SMTP")) {
1517## range of s is strings
1518## repeat retrieve (id = s.string_id) where s.string = @box
1519## inquire_equel (rowcount = "rowcount")
1520 if (rowcount == 0) {
1521## range of v is values
1522## repeat retrieve (id = v.value) where v.name = "strings_id"
1523 id++;
1524## repeat replace v (value = @id) where v.name = "strings_id"
1525## append to strings (string_id = id, string = box)
1526 }
1527## repeat replace users (#potype = "SMTP", box_id = @id)
1528## where users.users_id = @user
1529 } else /* argv[1] == "NONE" */ {
1530## repeat replace users (#potype = "NONE") where users.users_id = @user
1531 }
1532
1533 set_pobox_modtime(q, argv, cl);
1534## repeat replace tblstats (updates = tblstats.updates + 1, modtime = "now")
1535## where tblstats.#table = "users"
1536 return(SMS_SUCCESS);
1537##}
1538
1539
1540/* get_list_info: passed a wildcard list name, returns lots of stuff about
1541 * each list. This is tricky: first build a queue of all requested
1542 * data. Rest of processing consists of fixing gid, ace_name, and modby.
1543 */
1544
1545get_list_info(q, aargv, cl, action, actarg)
1546 register struct query *q;
1547 char **aargv;
1548 client *cl;
1549 register int (*action)();
1550 int actarg;
1551##{
1552 char *argv[13], *malloc(), *realloc();
1553## char *name, acl_type[9], listname[33], active[5], public[5], hidden[5];
1554## char maillist[5], group[5], gid[6], acl_name[33], desc[256], modtime[27];
1555## char modby[9], modwith[9];
1556## int id, rowcount, acl_id, hid, modby_id;
1557 int returned;
1558 struct save_queue *sq, *sq_create();
1559
1560 returned = rowcount = 0;
1561 name = aargv[0];
1562
1563 sq = sq_create();
1564## range of l is list
1565## repeat retrieve (id = l.list_id) where l.#name = @name {
1566 sq_save_data(sq, id);
1567 rowcount++;
1568## }
1569 if (rowcount == 0)
1570 return(SMS_NO_MATCH);
1571
1572 argv[0] = listname; argv[1] = active; argv[2] = public; argv[3] = hidden;
1573 argv[4] = maillist; argv[5] = group; argv[6] = gid; argv[7] = acl_type;
1574 argv[8] = acl_name; argv[9] = desc; argv[10] = modtime; argv[11] = modby;
1575 argv[12] = modwith;
1576
1577 while (sq_get_data(sq, &id)) {
1578 if (id == 0)
1579 continue;
1580 argv[6] = gid;
1581## repeat retrieve (listname = l.#name, active = text(l.#active),
1582## public = text(l.#public), hidden = text(l.#hidden),
1583## hid = l.#hidden, maillist = text(l.#maillist),
1584## group = text(l.#group), gid = text(l.#gid),
1585## acl_type = trim(l.#acl_type), acl_id = l.#acl_id,
1586## desc = l.#desc, modtime = l.#modtime, modby_id = l.#modby,
1587## modwith =l.#modwith)
1588## where l.list_id = @id
1589
1590 if (atoi(gid) == -1)
1591 argv[6] = UNIQUE_GID;
1592
1593 if (!strcmp(acl_type, "LIST")) {
1594## repeat retrieve (acl_name = l.#name) where l.list_id = @acl_id
1595## inquire_equel(rowcount = "rowcount")
1596 if (rowcount != 1)
1597 strcpy(acl_name, "???");
1598 } else if (!strcmp(acl_type, "USER")) {
1599## repeat retrieve (acl_name = users.#login)
1600## where users.users_id = @acl_id
1601## inquire_equel(rowcount = "rowcount")
1602 if (rowcount != 1)
1603 strcpy(acl_name, "???");
1604 } else if (!strcmp(acl_type, "NONE")) {
1605 strcpy(acl_name, "NONE");
1606 } else
1607 strcpy(acl_name, "???");
1608
1609## repeat retrieve (modby = users.login) where users.users_id = @modby_id
1610## inquire_equel(rowcount = "rowcount")
1611 if (rowcount != 1)
1612 sprintf(modby, "#%d", id);
1613
1614 sms_trim_args(q->vcnt, argv);
1615 returned++;
1616 (*action)(q->vcnt, argv, actarg);
1617 }
1618
1619 sq_destroy(sq);
1620## repeat replace tblstats (retrieves = tblstats.retrieves + 1)
1621## where tblstats.#table = "list"
1622
1623 return (SMS_SUCCESS);
1624##}
1625
1626
1627/* get_ace_use - given a type and a name, return a type and a name.
1628 * The ace_type is one of "LIST", "USER", "RLIST", or "RUSER" in argv[0],
1629 * and argv[1] will contain the ID of the entity in question. The R*
1630 * types mean to recursively look at every containing list, not just
1631 * when the object in question is a direct member. On return, the
1632 * usage type will be one of LIST, SERVICE, FILESYS, QUOTA, QUERY, or ZEPHYR.
1633 */
1634
1635int get_ace_use(q, argv, cl, action, actarg)
1636 struct query *q;
1637 char *argv[];
1638 client *cl;
1639 int (*action)();
1640 int actarg;
1641##{
1642 int found = 0;
1643## char *atype;
1644## int aid, listid, id;
1645 struct save_queue *sq, *sq_create();
1646
1647 atype = argv[0];
1648 aid = *(int *)argv[1];
1649 if (!strcmp(atype, "LIST") || !strcmp(atype, "USER")) {
1650 return(get_ace_internal(atype, aid, action, actarg));
1651 }
1652
1653 sq = sq_create();
1654 if (!strcmp(atype, "RLIST")) {
1655 sq_save_data(sq, aid);
1656 /* get all the list_id's of containing lists */
1657## range of m is members
1658 while (sq_get_data(sq, &id)) {
1659## repeat retrieve (listid = m.list_id)
1660## where m.member_type = "LIST" and m.member_id = @id {
1661 sq_save_unique_data(sq, listid);
1662## }
1663 }
1664 /* now process each one */
1665 while (sq_get_data(sq, &id)) {
1666 if (get_ace_internal("LIST", id, action, actarg) == SMS_SUCCESS)
1667 found++;
1668 }
1669 }
1670
1671 if (!strcmp(atype, "RUSER")) {
1672## range of m is members
1673## repeat retrieve (listid = m.list_id)
1674## where m.member_type = "USER" and m.member_id = @aid {
1675 sq_save_data(sq, listid);
1676## }
1677 /* get all the list_id's of containing lists */
1678 while (sq_get_data(sq, &id)) {
1679## repeat retrieve (listid = m.list_id)
1680## where m.member_type = "LIST" and m.member_id = @id {
1681 sq_save_unique_data(sq, listid);
1682## }
1683 }
1684 /* now process each one */
1685 while (sq_get_data(sq, &id)) {
1686 if (get_ace_internal("LIST", id, action, actarg) == SMS_SUCCESS)
1687 found++;
1688 }
1689 if (get_ace_internal("USER", aid, action, actarg) == SMS_SUCCESS)
1690 found++;
1691 }
1692
1693 sq_destroy(sq);
1694 if (!found) return(SMS_NO_MATCH);
1695 return(SMS_SUCCESS);
1696##}
1697
1698
1699/* This looks up a single list or user for ace use. atype must be "USER"
1700 * or "LIST", and aid is the ID of the corresponding object. This is used
1701 * by get_ace_use above.
1702 */
1703
1704##get_ace_internal(atype, aid, action, actarg)
1705## char *atype;
1706## int aid;
1707 int (*action)();
1708 int actarg;
1709##{
1710 char *rargv[2];
1711 int found = 0;
1712## char name[33];
1713
1714 rargv[1] = name;
1715 if (!strcmp(atype, "LIST")) {
1716 rargv[0] = "FILESYS";
1717## repeat retrieve (name = filesys.label)
1718## where filesys.owners = @aid {
1719 (*action)(2, rargv, actarg);
1720 found++;
1721## }
1722
1723 rargv[0] = "QUERY";
1724## repeat retrieve (name = capacls.capability)
1725## where capacls.list_id = @aid {
1726 (*action)(2, rargv, actarg);
1727 found++;
1728## }
1729 } else if (!strcmp(atype, "USER")) {
1730 rargv[0] = "FILESYS";
1731## repeat retrieve (name = filesys.label)
1732## where filesys.owner = @aid {
1733 (*action)(2, rargv, actarg);
1734 found++;
1735## }
1736 }
1737
1738 rargv[0] = "LIST";
1739## repeat retrieve (name = list.#name)
1740## where list.acl_type = @atype and list.acl_id = @aid {
1741 (*action)(2, rargv, actarg);
1742 found++;
1743## }
1744
1745 rargv[0] = "SERVICE";
1746## repeat retrieve (name = servers.#name)
1747## where servers.acl_type = @atype and servers.acl_id = @aid {
1748 (*action)(2, rargv, actarg);
1749 found++;
1750## }
1751
1752 rargv[0] = "HOSTACCESS";
1753## repeat retrieve (name = machine.#name)
1754## where machine.mach_id = hostaccess.mach_id and
1755## hostaccess.acl_type = @atype and hostaccess.acl_id = @aid {
1756 (*action)(2, rargv, actarg);
1757 found++;
1758## }
1759 rargv[0] = "ZEPHYR";
1760## repeat retrieve (name = zephyr.class)
1761## where zephyr.xmt_type = @atype and zephyr.xmt_id = @aid or
1762## zephyr.sub_type = @atype and zephyr.sub_id = @aid or
1763## zephyr.iws_type = @atype and zephyr.iws_id = @aid or
1764## zephyr.iui_type = @atype and zephyr.iui_id = @aid {
1765 (*action)(2, rargv, actarg);
1766 found++;
1767## }
1768
1769 if (!found) return(SMS_NO_MATCH);
1770 return(SMS_SUCCESS);
1771##}
1772
1773
1774/* get_lists_of_member - given a type and a name, return the name and flags
1775 * of all of the lists of the given member. The member_type is one of
1776 * "LIST", "USER", "STRING", "RLIST", "RUSER", or "RSTRING" in argv[0],
1777 * and argv[1] will contain the ID of the entity in question. The R*
1778 * types mean to recursively look at every containing list, not just
1779 * when the object in question is a direct member.
1780 */
1781
1782int get_lists_of_member(q, argv, cl, action, actarg)
1783 struct query *q;
1784 char *argv[];
1785 client *cl;
1786 int (*action)();
1787 int actarg;
1788##{
1789 int found = 0;
1790## char *atype;
1791## int aid, listid, id;
1792 struct save_queue *sq, *sq_create();
1793
1794 atype = argv[0];
1795 aid = *(int *)argv[1];
1796 if (!strcmp(atype, "LIST") ||
1797 !strcmp(atype, "USER") ||
1798 !strcmp(atype, "STRING")) {
1799 return(glom_internal(atype, aid, action, actarg));
1800 }
1801
1802 sq = sq_create();
1803 if (!strcmp(atype, "RLIST")) {
1804 sq_save_data(sq, aid);
1805 /* get all the list_id's of containing lists */
1806## range of m is members
1807 while (sq_get_data(sq, &id)) {
1808## repeat retrieve (listid = m.list_id)
1809## where m.member_type = "LIST" and m.member_id = @id {
1810 sq_save_unique_data(sq, listid);
1811## }
1812 }
1813 /* now process each one */
1814 while (sq_get_data(sq, &id)) {
1815 if (glom_internal("LIST", id, action, actarg) == SMS_SUCCESS)
1816 found++;
1817 }
1818 }
1819
1820 if (!strcmp(atype, "RUSER")) {
1821## range of m is members
1822## repeat retrieve (listid = m.list_id)
1823## where m.member_type = "USER" and m.member_id = @aid {
1824 sq_save_data(sq, listid);
1825## }
1826 /* get all the list_id's of containing lists */
1827 while (sq_get_data(sq, &id)) {
1828## repeat retrieve (listid = m.list_id)
1829## where m.member_type = "LIST" and m.member_id = @id {
1830 sq_save_unique_data(sq, listid);
1831## }
1832 }
1833 /* now process each one */
1834 while (sq_get_data(sq, &id)) {
1835 if (glom_internal("LIST", id, action, actarg) == SMS_SUCCESS)
1836 found++;
1837 }
1838 if (glom_internal("USER", aid, action, actarg) == SMS_SUCCESS)
1839 found++;
1840 }
1841
1842 if (!strcmp(atype, "RSTRING")) {
1843## range of m is members
1844## repeat retrieve (listid = m.list_id)
1845## where m.member_type = "STRING" and m.member_id = @aid {
1846 sq_save_data(sq, listid);
1847## }
1848 /* get all the list_id's of containing lists */
1849 while (sq_get_data(sq, &id)) {
1850## repeat retrieve (listid = m.list_id)
1851## where m.member_type = "LIST" and m.member_id = @id {
1852 sq_save_unique_data(sq, listid);
1853## }
1854 }
1855 /* now process each one */
1856 while (sq_get_data(sq, &id)) {
1857 if (glom_internal("LIST", id, action, actarg) == SMS_SUCCESS)
1858 found++;
1859 }
1860 if (glom_internal("STRING", aid, action, actarg) == SMS_SUCCESS)
1861 found++;
1862 }
1863
1864## repeat replace tblstats (retrieves = tblstats.retrieves + 1)
1865## where tblstats.#table = "members"
1866 sq_destroy(sq);
1867 if (!found) return(SMS_NO_MATCH);
1868 return(SMS_SUCCESS);
1869##}
1870
1871
1872/* This looks up a single list, user, or string as a member. atype must be
1873 * "USER", "LIST", or "STRING" and aid is the ID of the corresponding object.
1874 * This is used by get_lists_of_members above.
1875 */
1876
1877##glom_internal(atype, aid, action, actarg)
1878## char *atype;
1879## int aid;
1880 int (*action)();
1881 int actarg;
1882##{
1883 char *rargv[6];
1884 int found = 0;
1885## char name[33], active[5], public[5], hidden[5], maillist[5], group[5];
1886
1887 rargv[0] = name;
1888 rargv[1] = active;
1889 rargv[2] = public;
1890 rargv[3] = hidden;
1891 rargv[4] = maillist;
1892 rargv[5] = group;
1893## repeat retrieve (name = list.#name, active = text(list.#active),
1894## public = text(list.#public), hidden = text(list.#hidden),
1895## maillist = text(list.#maillist), group = text(list.#group))
1896## where list.list_id = m.list_id and
1897## m.member_type = @atype and m.member_id = @aid {
1898 (*action)(6, rargv, actarg);
1899 found++;
1900## }
1901
1902 if (!found) return(SMS_NO_MATCH);
1903 return(SMS_SUCCESS);
1904##}
1905
1906
1907/* qualified_get_lists: passed "TRUE", "FALSE", or "DONTCARE" for each of
1908 * the five flags associated with each list. It will return the name of
1909 * each list that meets the quailifications. It does this by building a
1910 * where clause based on the arguments, then doing a retrieve.
1911 */
1912
1913static char *lflags[5] = { "active", "public", "hidden", "maillist", "group" };
1914
1915int qualified_get_lists(q, argv, cl, action, actarg)
1916 struct query *q;
1917 char *argv[];
1918 client *cl;
1919 int (*action)();
1920 int actarg;
1921{
1922 return(qualified_get(q, argv, action, actarg, "l.list_id != 0",
1923 "l", "name", lflags));
1924}
1925
1926
1927/** get_members_of_list - optimized query for retrieval of list members
1928 **
1929 ** Inputs:
1930 ** argv[0] - list_id
1931 **
1932 ** Description:
1933 ** - retrieve USER members, then LIST members, then STRING members
1934 **/
1935
1936get_members_of_list(q, argv, cl, action, actarg)
1937 struct query *q;
1938 char *argv[];
1939 client *cl;
1940 int (*action)();
1941 int actarg;
1942##{
1943## int list_id;
1944## char member_name[129];
1945 char *targv[2];
1946
1947 list_id = *(int *)argv[0];
1948 targv[0] = "USER";
1949 targv[1] = member_name;
1950
1951## range of m is members
1952## repeat retrieve (member_name = users.login)
1953## where m.#list_id = @list_id and m.member_type = "USER"
1954## and m.member_id = users.users_id
1955## sort by #member_name
1956## {
1957 (*action)(2, targv, actarg);
1958## }
1959
1960 targv[0] = "LIST";
1961## repeat retrieve (member_name = list.name)
1962## where m.#list_id = @list_id and m.member_type = "LIST"
1963## and m.member_id = list.#list_id
1964## sort by #member_name
1965## {
1966 (*action)(2, targv, actarg);
1967## }
1968
1969 targv[0] = "STRING";
1970## repeat retrieve (member_name = strings.string)
1971## where m.#list_id = @list_id and m.member_type = "STRING"
1972## and m.member_id = strings.string_id
1973## sort by #member_name
1974## {
1975 (*action)(2, targv, actarg);
1976## }
1977
1978## repeat replace tblstats (retrieves = tblstats.retrieves + 1)
1979## where tblstats.#table = "members"
1980 return(SMS_SUCCESS);
1981##}
1982
1983
1984/* count_members_of_list: this is a simple query, but it cannot be done
1985 * through the dispatch table.
1986 */
1987
1988int count_members_of_list(q, argv, cl, action, actarg)
1989 struct query *q;
1990 char *argv[];
1991 client *cl;
1992 int (*action)();
1993 int actarg;
1994##{
1995## int list, ct = 0;
1996 char *rargv[1], countbuf[5];
1997
1998 list = *(int *)argv[0];
1999 rargv[0] = countbuf;
2000## repeat retrieve (ct = count(members.list_id where members.list_id = @list))
2001 sprintf(countbuf, "%d", ct);
2002 (*action)(1, rargv, actarg);
2003## repeat replace tblstats (retrieves = tblstats.retrieves + 1)
2004## where tblstats.#table = "members"
2005 return(SMS_SUCCESS);
2006##}
2007
2008
2009/* qualified_get_server: passed "TRUE", "FALSE", or "DONTCARE" for each of
2010 * the three flags associated with each service. It will return the name of
2011 * each service that meets the quailifications. It does this by building a
2012 * where clause based on the arguments, then doing a retrieve.
2013 */
2014
2015static char *sflags[3] = { "enable", "inprogress", "harderror" };
2016
2017int qualified_get_server(q, argv, cl, action, actarg)
2018 struct query *q;
2019 char *argv[];
2020 client *cl;
2021 int (*action)();
2022 int actarg;
2023{
2024 return(qualified_get(q, argv, action, actarg, "s.name != \"\"",
2025 "s", "name", sflags));
2026}
2027
2028
2029/* generic qualified get routine, used by qualified_get_lists,
2030 * qualified_get_server, and qualified_get_serverhost.
2031 * Args:
2032 * start - a simple where clause, must not be empty
2033 * range - the name of the range variable
2034 * field - the field to return
2035 * flags - an array of strings, names of the flag variables
2036 */
2037
2038int qualified_get(q, argv, action, actarg, start, range, field, flags)
2039 struct query *q;
2040 char *argv[];
2041 int (*action)();
2042 int actarg;
2043 char *start;
2044 char *range;
2045 char *field;
2046 char *flags[];
2047##{
2048## char name[33], qual[256], *rvar, *rtbl, *rfield;
2049 char *rargv[1], buf[32];
2050## int rowcount, i;
2051
2052 strcpy(qual, start);
2053 for (i = 0; i < q->argc; i++) {
2054 if (!strcmp(argv[i], "TRUE")) {
2055 sprintf(buf, " and %s.%s != 0", range, flags[i]);
2056 (void) strcat(qual, buf);
2057 } else if (!strcmp(argv[i], "FALSE")) {
2058 sprintf(buf, " and %s.%s = 0", range, flags[i]);
2059 (void) strcat(qual, buf);
2060 }
2061 }
2062
2063 rargv[0] = name;
2064 rvar = range;
2065 rtbl = q->rtable;
2066 rfield = field;
2067## range of rvar is rtbl
2068## retrieve (name = rvar.rfield) where qual {
2069 (*action)(1, rargv, actarg);
2070## }
2071## inquire_equel(rowcount = "rowcount")
2072## repeat replace tblstats (retrieves = tblstats.retrieves + 1)
2073## where tblstats.#table = @rtbl
2074 if (rowcount == 0)
2075 return(SMS_NO_MATCH);
2076 return(SMS_SUCCESS);
2077##}
2078
2079
2080/* qualified_get_serverhost: passed "TRUE", "FALSE", or "DONTCARE" for each of
2081 * the five flags associated with each serverhost. It will return the name of
2082 * each service and host that meets the quailifications. It does this by
2083 * building a where clause based on the arguments, then doing a retrieve.
2084 */
2085
2086static char *shflags[6] = { "service", "enable", "override", "success",
2087 "inprogress", "hosterror" };
2088
2089int qualified_get_serverhost(q, argv, cl, action, actarg)
2090 struct query *q;
2091 char *argv[];
2092 client *cl;
2093 int (*action)();
2094 int actarg;
2095##{
2096## char sname[33], mname[33], qual[256];
2097 char *rargv[2], buf[32];
2098## int rowcount, i;
2099
2100 sprintf(qual, "machine.mach_id = sh.mach_id and sh.service = uppercase(\"%s\")",
2101 argv[0]);
2102 for (i = 1; i < q->argc; i++) {
2103 if (!strcmp(argv[i], "TRUE")) {
2104 sprintf(buf, " and sh.%s != 0", shflags[i]);
2105 strcat(qual, buf);
2106 } else if (!strcmp(argv[i], "FALSE")) {
2107 sprintf(buf, " and sh.%s = 0", shflags[i]);
2108 strcat(qual, buf);
2109 }
2110 }
2111
2112 rargv[0] = sname;
2113 rargv[1] = mname;
2114## range of sh is serverhosts
2115## retrieve (sname = sh.service, mname = machine.name) where qual {
2116 (*action)(2, rargv, actarg);
2117## }
2118## inquire_equel(rowcount = "rowcount")
2119## repeat replace tblstats (retrieves = tblstats.retrieves + 1)
2120## where tblstats.#table = "serverhosts"
2121 if (rowcount == 0)
2122 return(SMS_NO_MATCH);
2123 return(SMS_SUCCESS);
2124##}
2125
2126
2127/* register_user - change user's login name and allocate a pobox, group,
2128 * filesystem, and quota for them. The user's status must start out as 0,
2129 * and is left as 2. Arguments are: user's UID, new login name, and user's
2130 * type for filesystem allocation (SMS_FS_STUDENT, SMS_FS_FACULTY,
2131 * SMS_FS_STAFF, SMS_FS_MISC).
2132 */
2133
2134register_user(q, argv, cl)
2135 struct query *q;
2136 char **argv;
2137 client *cl;
2138##{
2139## char *login, dir[65], *entity, *directory, machname[33];
2140## int who, rowcount, mid, uid, users_id, flag, utype, nid, list_id, quota;
2141## int size, alloc, pid, m_id;
2142 int maxsize;
2143
2144 entity = cl->entity;
2145 who = cl->users_id;
2146
2147 uid = atoi(argv[0]);
2148 login = argv[1];
2149 utype = atoi(argv[2]);
2150
2151## range of u is users
2152## range of l is list
2153## range of sh is serverhosts
2154## range of n is nfsphys
2155## range of m is machine
2156
2157 /* find user */
2158## repeat retrieve (users_id = u.#users_id)
2159## where u.#uid = @uid and u.status = 0
2160## inquire_equel(rowcount = "rowcount");
2161 if (rowcount == 0)
2162 return(SMS_NO_MATCH);
2163 if (rowcount > 1)
2164 return(SMS_NOT_UNIQUE);
2165
2166 /* check new login name */
2167## repeat retrieve (flag = any(u.#login where u.#login = @login))
2168 if (flag)
2169 return(SMS_IN_USE);
2170## repeat retrieve (flag = any(l.#name where l.#name = @login))
2171 if (flag)
2172 return(SMS_IN_USE);
2173## repeat retrieve (flag = any(filesys.#name where filesys.#name = @login))
2174 if (flag)
2175 return(SMS_IN_USE);
2176 com_err(whoami, 0, "new login name OK");
2177
2178 /* choose place for pobox, put in mid */
2179## repeat retrieve (mid = sh.mach_id, machname = m.name)
2180## where sh.service = "POP" and m.mach_id = sh.mach_id and
2181## sh.value2 - sh.value1 = max(sh.value2-sh.value1 where sh.service="POP")
2182## inquire_equel(rowcount = "rowcount");
2183 if (rowcount == 0)
2184 return(SMS_NO_POBOX);
2185
2186 /* change login name, set pobox */
2187## repeat replace u (#login = @login, status = 2, modtime = "now",
2188## modby = @who, modwith = @entity, potype="POP",
2189## pop_id = @mid, pmodtime="now", pmodby=@who,
2190## pmodwith=@entity)
2191## where u.#users_id = @users_id
2192## inquire_equel(rowcount = "rowcount");
2193 if (rowcount != 1)
2194 return(SMS_INTERNAL);
2195 set_pop_usage(mid, 1);
2196 com_err(whoami, 0, "set login name to %s and pobox to %s", login,
2197 trim(machname));
2198
2199 /* create group list */
2200 if (set_next_object_id("gid", "list"))
2201 return(SMS_NO_ID);
2202 if (set_next_object_id("list_id", "list"))
2203 return(SMS_NO_ID);
2204## repeat retrieve (list_id = values.value) where values.name = "list_id"
2205## inquire_equel(rowcount = "rowcount");
2206 if (rowcount != 1)
2207 return(SMS_INTERNAL);
2208## repeat append list (name = @login, #list_id = @list_id, active = 1,
2209## public = 0, hidden = 0, maillist = 0, group = 1,
2210## #gid = values.value, desc = "User Group",
2211## acl_type = "USER", acl_id = @users_id, modtime = "now",
2212## modby = @who, modwith = @entity)
2213## where values.name = "gid"
2214## inquire_equel(rowcount = "rowcount");
2215 if (rowcount != 1)
2216 return(SMS_INTERNAL);
2217## repeat append members (#list_id = @list_id, member_type = "USER",
2218## member_id = @users_id)
2219## inquire_equel(rowcount = "rowcount");
2220 if (rowcount != 1)
2221 return(SMS_INTERNAL);
2222 com_err(whoami, 0, "group list created");
2223
2224 /* decide where to put filesystem */
2225 maxsize = 0;
2226 directory = NULL;
2227## repeat retrieve (mid = n.mach_id, dir = trim(n.#dir), nid = n.nfsphys_id,
2228## flag = n.status, size = n.#size, alloc = n.allocated) {
2229 if ((flag & utype) && (size != 0) && (size - alloc > maxsize)) {
2230 maxsize = size - alloc;
2231 if (directory)
2232 free(directory);
2233 directory = strsave(dir);
2234 pid = nid;
2235 m_id = mid;
2236 }
2237## }
2238 if (maxsize == 0)
2239 return(SMS_NO_FILESYS);
2240
2241 /* create filesystem */
2242 if (set_next_object_id("filsys_id", "filesys"))
2243 return(SMS_NO_ID);
2244## repeat append filesys (filsys_id = values.value, phys_id = @pid,
2245## label = @login, type = "NFS", mach_id = @m_id,
2246## name = @directory + "/" + @login,
2247## mount = "/mit/" + @login,
2248## access = "w", comments = "User Locker",
2249## owner = @users_id, owners = @list_id, createflg = 1,
2250## lockertype = "HOMEDIR", modtime = "now",
2251## modby = @who, modwith = @entity)
2252## where values.name = "filsys_id"
2253## inquire_equel(rowcount = "rowcount");
2254 if (rowcount != 1)
2255 return(SMS_INTERNAL);
2256 com_err(whoami, 0, "filesys created on mach %d in %s/%s", m_id,
2257 directory, login);
2258
2259 /* set quota */
2260## repeat retrieve (quota = values.value) where values.name = "def_quota"
2261## inquire_equel(rowcount = "rowcount");
2262 if (rowcount != 1)
2263 return(SMS_NO_QUOTA);
2264## repeat append nfsquota (#users_id = @users_id, filsys_id = values.value,
2265## #quota = @quota, phys_id = @pid, modtime = "now",
2266## modby = @who, modwith = @entity)
2267## where values.name = "filsys_id"
2268## inquire_equel(rowcount = "rowcount");
2269 if (rowcount != 1)
2270 return(SMS_INTERNAL);
2271## repeat replace nfsphys (allocated = nfsphys.allocated + @quota)
2272## where nfsphys.nfsphys_id = filesys.#phys_id and
2273## filesys.filsys_id = values.value and values.name = "filsys_id"
2274## inquire_equel(rowcount = "rowcount");
2275 if (rowcount != 1)
2276 return(SMS_INTERNAL);
2277 com_err(whoami, 0, "quota of %d assigned", quota);
2278
2279## repeat replace tblstats (updates = tblstats.updates + 1, modtime = "now")
2280## where tblstats.table = "users"
2281## repeat replace tblstats (appends = tblstats.appends + 1, modtime = "now")
2282## where tblstats.table = "list" or tblstats.table = "filesys" or
2283## tblstats.table = "nfsquota"
2284 return(SMS_SUCCESS);
2285##}
2286
2287
2288
2289/** set_pop_usage - incr/decr usage count for pop server in serverhosts talbe
2290 **
2291 ** Inputs:
2292 ** id of machine
2293 ** delta (will be +/- 1)
2294 **
2295 ** Description:
2296 ** - incr/decr value field in serverhosts table for pop/mach_id
2297 **
2298 **/
2299
2300static int set_pop_usage(id, count)
2301int id;
2302int count;
2303##{
2304## int mach_id = id;
2305## int n = count;
2306
2307## range of sh is serverhosts
2308## repeat replace sh (value1 = sh.value1 + @n)
2309## where sh.service = "POP" and sh.#mach_id = @mach_id
2310
2311 return(SMS_SUCCESS);
2312##}
2313
2314
2315\f
2316/* Validation Routines */
2317
2318validate_row(q, argv, v)
2319 register struct query *q;
2320 char *argv[];
2321 register struct validate *v;
2322##{
2323## char *rvar;
2324## char *table;
2325## char *name;
2326## char qual[128];
2327## int rowcount;
2328
2329 /* build where clause */
2330 build_qual(v->qual, v->argc, argv, qual);
2331
2332 /* setup ingres variables */
2333 rvar = q->rvar;
2334 table = q->rtable;
2335 name = v->field;
2336
2337 if (log_flags & LOG_VALID)
2338 /* tell the logfile what we're doing */
2339 com_err(whoami, 0, "validating row: %s", qual);
2340
2341 /* look for the record */
2342## range of rvar is table
2343## retrieve (rowcount = count(rvar.name where qual))
2344 if (rowcount == 0) return(SMS_NO_MATCH);
2345 if (rowcount > 1) return(SMS_NOT_UNIQUE);
2346 return(SMS_EXISTS);
2347##}
2348
2349validate_fields(q, argv, vo, n)
2350 struct query *q;
2351 register char *argv[];
2352 register struct valobj *vo;
2353 register int n;
2354{
2355 register int status;
2356
2357 while (--n >= 0) {
2358 switch (vo->type) {
2359 case V_NAME:
2360 if (log_flags & LOG_VALID)
2361 com_err(whoami, 0, "validating %s in %s: %s",
2362 vo->namefield, vo->table, argv[vo->index]);
2363 status = validate_name(argv, vo);
2364 break;
2365
2366 case V_ID:
2367 if (log_flags & LOG_VALID)
2368 com_err(whoami, 0, "validating %s in %s: %s",
2369 vo->idfield, vo->table, argv[vo->index]);
2370 status = validate_id(argv, vo);
2371 break;
2372
2373 case V_DATE:
2374 if (log_flags & LOG_VALID)
2375 com_err(whoami, 0, "validating date: %s", argv[vo->index]);
2376 status = validate_date(argv, vo);
2377 break;
2378
2379 case V_TYPE:
2380 if (log_flags & LOG_VALID)
2381 com_err(whoami, 0, "validating %s type: %s",
2382 vo->table, argv[vo->index]);
2383 status = validate_type(argv, vo);
2384 break;
2385
2386 case V_TYPEDATA:
2387 if (log_flags & LOG_VALID)
2388 com_err(whoami, 0, "validating typed data (%s): %s",
2389 argv[vo->index - 1], argv[vo->index]);
2390 status = validate_typedata(q, argv, vo);
2391 break;
2392
2393 case V_RENAME:
2394 if (log_flags & LOG_VALID)
2395 com_err(whoami, 0, "validating rename %s in %s",
2396 argv[vo->index], vo->table);
2397 status = validate_rename(argv, vo);
2398 break;
2399
2400 case V_CHAR:
2401 if (log_flags & LOG_VALID)
2402 com_err(whoami, 0, "validating chars: %s", argv[vo->index]);
2403 status = validate_chars(argv[vo->index]);
2404 break;
2405
2406 case V_SORT:
2407 status = SMS_EXISTS;
2408 break;
2409
2410 }
2411
2412 if (status != SMS_EXISTS) return(status);
2413 vo++;
2414 }
2415
2416 return(SMS_SUCCESS);
2417}
2418
2419
2420/* validate_chars: verify that there are no illegal characters in
2421 * the string. Legal characters are printing chars other than
2422 * ", *, ?, \, [ and ].
2423 */
2424static int illegalchars[] = {
2425 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* ^@ - ^O */
2426 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* ^P - ^_ */
2427 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, /* SPACE - / */
2428 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, /* 0 - ? */
2429 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* @ - O */
2430 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, /* P - _ */
2431 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* ` - o */
2432 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, /* p - ^? */
2433 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2434 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2435 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2436 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2437 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2438 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2439 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2440 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2441};
2442
2443validate_chars(s)
2444register char *s;
2445{
2446 while (*s)
2447 if (illegalchars[*s++])
2448 return(SMS_BAD_CHAR);
2449 return(SMS_EXISTS);
2450}
2451
2452
2453validate_id(argv, vo)
2454 char *argv[];
2455 register struct valobj *vo;
2456##{
2457## char *name;
2458## char *table;
2459## char *namefield;
2460## char *idfield;
2461## int id;
2462## int rowcount;
2463 register char *c;
2464
2465 name = argv[vo->index];
2466 table = vo->table;
2467 /* minor kludge to upcasify machine names */
2468 if (!strcmp(table, "machine"))
2469 for (c = name; *c; c++) if (islower(*c)) *c = toupper(*c);
2470 namefield = vo->namefield;
2471 idfield = vo->idfield;
2472 if (!strcmp(namefield, "uid")) {
2473## retrieve (id = table.idfield) where table.namefield = int4(name)
2474## inquire_equel (rowcount = "rowcount")
2475 } else {
2476## retrieve (id = table.idfield) where table.namefield = name
2477## inquire_equel (rowcount = "rowcount")
2478 }
2479 if (rowcount != 1) return(vo->error);
2480 *(int *)argv[vo->index] = id;
2481 return(SMS_EXISTS);
2482##}
2483
2484validate_name(argv, vo)
2485 char *argv[];
2486 register struct valobj *vo;
2487##{
2488## char *name;
2489## char *table;
2490## char *namefield;
2491## int rowcount;
2492 register char *c;
2493
2494 name = argv[vo->index];
2495 table = vo->table;
2496 namefield = vo->namefield;
2497 if (!strcmp(table, "servers") && !strcmp(namefield, "name")) {
2498 for (c = name; *c; c++)
2499 if (islower(*c))
2500 *c = toupper(*c);
2501 }
2502## retrieve (rowcount = countu(table.namefield
2503## where table.namefield = name))
2504 return ((rowcount == 1) ? SMS_EXISTS : vo->error);
2505##}
2506
2507validate_date(argv, vo)
2508 char *argv[];
2509 struct valobj *vo;
2510##{
2511## char *idate;
2512## double dd;
2513## int errorno;
2514
2515 idate = argv[vo->index];
2516
2517## retrieve (dd = interval("years", date(idate) - date("today")))
2518## inquire_equel (errorno = "errorno")
2519 if (errorno != 0 || dd > 5.0) return(SMS_DATE);
2520 return(SMS_EXISTS);
2521##}
2522
2523
2524validate_rename(argv, vo)
2525char *argv[];
2526struct valobj *vo;
2527##{
2528## char *name, *table, *namefield, *idfield;
2529## int id;
2530 register char *c;
2531
2532 c = name = argv[vo->index];
2533 while (*c)
2534 if (illegalchars[*c++])
2535 return(SMS_BAD_CHAR);
2536 table = vo->table;
2537 /* minor kludge to upcasify machine names */
2538 if (!strcmp(table, "machine"))
2539 for (c = name; *c; c++) if (islower(*c)) *c = toupper(*c);
2540 namefield = vo->namefield;
2541 idfield = vo->idfield;
2542 id = -1;
2543 if (idfield == 0) {
2544 if (!strcmp(argv[vo->index], argv[vo->index - 1]))
2545 return(SMS_EXISTS);
2546## retrieve (id = any(table.namefield where table.namefield = name))
2547 if (id)
2548 return(vo->error);
2549 else
2550 return(SMS_EXISTS);
2551 }
2552## retrieve (id = table.idfield) where table.namefield = name
2553 if (id == -1 || id == *(int *)argv[vo->index - 1])
2554 return(SMS_EXISTS);
2555 else
2556 return(vo->error);
2557##}
2558
2559
2560validate_type(argv, vo)
2561 char *argv[];
2562 register struct valobj *vo;
2563##{
2564## char *typename;
2565## char *value;
2566## int exists;
2567 register char *c;
2568
2569 typename = vo->table;
2570 c = value = argv[vo->index];
2571 while (*c)
2572 if (illegalchars[*c++])
2573 return(SMS_BAD_CHAR);
2574
2575 /* uppercase type fields */
2576 for (c = value; *c; c++) if (islower(*c)) *c = toupper(*c);
2577
2578## range of a is alias
2579## repeat retrieve (exists = any(a.trans where a.name = @typename and
2580## a.type = "TYPE" and
2581## a.trans = @value))
2582 return (exists ? SMS_EXISTS : vo->error);
2583##}
2584
2585/* validate member or type-specific data field */
2586
2587validate_typedata(q, argv, vo)
2588 register struct query *q;
2589 register char *argv[];
2590 register struct valobj *vo;
2591##{
2592## char *name;
2593## char *field_type;
2594## char data_type[129];
2595## int id;
2596## int rowcount;
2597 char *index();
2598 register char *c;
2599
2600 /* get named object */
2601 name = argv[vo->index];
2602
2603 /* get field type string (known to be at index-1) */
2604 field_type = argv[vo->index-1];
2605
2606 /* get corresponding data type associated with field type name */
2607## repeat retrieve (data_type = alias.trans)
2608## where alias.#name = @field_type and alias.type = "TYPEDATA"
2609## inquire_equel (rowcount = "rowcount")
2610 if (rowcount != 1) return(SMS_TYPE);
2611
2612 /* now retrieve the record id corresponding to the named object */
2613 if (index(data_type, ' '))
2614 *index(data_type, ' ') = 0;
2615 if (!strcmp(data_type, "user")) {
2616 /* USER */
2617## repeat retrieve (id = users.users_id) where users.login = @name
2618## inquire_equel (rowcount = "rowcount")
2619 if (rowcount != 1) return(SMS_USER);
2620
2621 } else if (!strcmp(data_type, "list")) {
2622 /* LIST */
2623## repeat retrieve (id = list.list_id) where list.#name = @name
2624## inquire_equel (rowcount = "rowcount")
2625 if (rowcount != 1) {
2626 /* if idfield is non-zero, then if argv[0] matches the string
2627 * that we're trying to resolve, we should get the value of
2628 * values.[idfield] for the id.
2629 */
2630 if (vo->idfield && !strcmp(argv[0], argv[vo->index])) {
2631 set_next_object_id(q->validate->object_id, q->rtable);
2632 name = vo->idfield;
2633## repeat retrieve (id = values.value) where values.#name = @name
2634## inquire_equel(rowcount = "rowcount")
2635 if (rowcount != 1) return(SMS_LIST);
2636 } else
2637 return(SMS_LIST);
2638 }
2639 } else if (!strcmp(data_type, "machine")) {
2640 /* MACHINE */
2641 for (c = name; *c; c++) if (islower(*c)) *c = toupper(*c);
2642## repeat retrieve (id = machine.mach_id) where machine.#name = @name
2643## inquire_equel (rowcount = "rowcount")
2644 if (rowcount != 1) return(SMS_MACHINE);
2645
2646 } else if (!strcmp(data_type, "string")) {
2647 /* STRING */
2648## range of s is strings
2649## repeat retrieve (id = s.string_id) where s.string = @name
2650## inquire_equel (rowcount = "rowcount")
2651 if (rowcount == 0) {
2652 if (q->type != APPEND) return(SMS_STRING);
2653## range of v is values
2654## retrieve (id = v.value) where v.#name = "strings_id"
2655 id++;
2656## replace v (value = id) where v.#name = "strings_id"
2657## append to strings (string_id = id, string = name)
2658 }
2659 } else if (!strcmp(data_type, "none")) {
2660 id = 0;
2661 } else {
2662 return(SMS_TYPE);
2663 }
2664
2665 /* now set value in argv */
2666 *(int *)argv[vo->index] = id;
2667
2668 return (SMS_EXISTS);
2669##}
2670
2671
2672/* This looks up a login name and returns the SMS internal ID. It is used
2673 * by authenticate to put the users_id in the client structure.
2674 */
2675
2676int get_users_id(name)
2677char *name;
2678##{
2679## int id, rowcount;
2680## char *login;
2681
2682 login = name;
2683
2684## range of u is users
2685## repeat retrieve (id = u.#users_id) where u.#login = @login
2686## inquire_equel (rowcount = "rowcount")
2687
2688 if (rowcount == 1)
2689 return(id);
2690 else
2691 return(0);
2692##}
2693
2694
2695/* Check the database at startup time. For now this just resets the
2696 * inprogress flags that the DCM uses.
2697 */
2698
2699sanity_check_database()
2700##{
2701##}
This page took 0.110504 seconds and 5 git commands to generate.