X-Git-Url: http://andersk.mit.edu/gitweb/gssapi-openssh.git/blobdiff_plain/7e82606eb98e6071e4ad650b91a75933c1358485..255d7550082d59ec8f69f57b122d8fcfe179f4f9:/openssh/moduli.c diff --git a/openssh/moduli.c b/openssh/moduli.c index 581b035..44e5ddf 100644 --- a/openssh/moduli.c +++ b/openssh/moduli.c @@ -1,4 +1,4 @@ -/* $OpenBSD: moduli.c,v 1.9 2004/07/11 17:48:47 deraadt Exp $ */ +/* $OpenBSD: moduli.c,v 1.19 2006/11/06 21:25:28 markus Exp $ */ /* * Copyright 1994 Phil Karn * Copyright 1996-1998, 2003 William Allen Simpson @@ -38,11 +38,20 @@ */ #include "includes.h" -#include "xmalloc.h" -#include "log.h" + +#include #include +#include +#include +#include +#include +#include + +#include "xmalloc.h" +#include "log.h" + /* * File output defines */ @@ -56,7 +65,7 @@ #define QTYPE_UNKNOWN (0) #define QTYPE_UNSTRUCTURED (1) #define QTYPE_SAFE (2) -#define QTYPE_SCHNOOR (3) +#define QTYPE_SCHNORR (3) #define QTYPE_SOPHIE_GERMAIN (4) #define QTYPE_STRONG (5) @@ -112,22 +121,22 @@ #define TINY_NUMBER (1UL<<16) /* Ensure enough bit space for testing 2*q. */ -#define TEST_MAXIMUM (1UL<<16) -#define TEST_MINIMUM (QSIZE_MINIMUM + 1) -/* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */ -#define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */ +#define TEST_MAXIMUM (1UL<<16) +#define TEST_MINIMUM (QSIZE_MINIMUM + 1) +/* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */ +#define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */ /* bit operations on 32-bit words */ -#define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31))) -#define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31))) -#define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31))) +#define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31))) +#define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31))) +#define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31))) /* * Prime testing defines */ /* Minimum number of primality tests to perform */ -#define TRIAL_MINIMUM (4) +#define TRIAL_MINIMUM (4) /* * Sieving data (XXX - move to struct) @@ -144,7 +153,7 @@ static u_int32_t *LargeSieve, largewords, largetries, largenumbers; static u_int32_t largebits, largememory; /* megabytes */ static BIGNUM *largebase; -int gen_candidates(FILE *, int, int, BIGNUM *); +int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *); int prime_test(FILE *, FILE *, u_int32_t, u_int32_t); /* @@ -241,19 +250,20 @@ sieve_large(u_int32_t s) * The list is checked against small known primes (less than 2**30). */ int -gen_candidates(FILE *out, int memory, int power, BIGNUM *start) +gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start) { BIGNUM *q; u_int32_t j, r, s, t; u_int32_t smallwords = TINY_NUMBER >> 6; u_int32_t tinywords = TINY_NUMBER >> 6; time_t time_start, time_stop; - int i, ret = 0; + u_int32_t i; + int ret = 0; largememory = memory; if (memory != 0 && - (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) { + (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) { error("Invalid memory amount (min %ld, max %ld)", LARGE_MINIMUM, LARGE_MAXIMUM); return (-1); @@ -300,21 +310,10 @@ gen_candidates(FILE *out, int memory, int power, BIGNUM *start) largewords = (largememory << SHIFT_MEGAWORD); } - TinySieve = calloc(tinywords, sizeof(u_int32_t)); - if (TinySieve == NULL) { - error("Insufficient memory for tiny sieve: need %u bytes", - tinywords << SHIFT_BYTE); - exit(1); - } + TinySieve = xcalloc(tinywords, sizeof(u_int32_t)); tinybits = tinywords << SHIFT_WORD; - SmallSieve = calloc(smallwords, sizeof(u_int32_t)); - if (SmallSieve == NULL) { - error("Insufficient memory for small sieve: need %u bytes", - smallwords << SHIFT_BYTE); - xfree(TinySieve); - exit(1); - } + SmallSieve = xcalloc(smallwords, sizeof(u_int32_t)); smallbits = smallwords << SHIFT_WORD; /* @@ -328,20 +327,26 @@ gen_candidates(FILE *out, int memory, int power, BIGNUM *start) /* validation check: count the number of primes tried */ largetries = 0; - q = BN_new(); + if ((q = BN_new()) == NULL) + fatal("BN_new failed"); /* * Generate random starting point for subprime search, or use * specified parameter. */ - largebase = BN_new(); - if (start == NULL) - BN_rand(largebase, power, 1, 1); - else - BN_copy(largebase, start); + if ((largebase = BN_new()) == NULL) + fatal("BN_new failed"); + if (start == NULL) { + if (BN_rand(largebase, power, 1, 1) == 0) + fatal("BN_rand failed"); + } else { + if (BN_copy(largebase, start) == NULL) + fatal("BN_copy: failed"); + } /* ensure odd */ - BN_set_bit(largebase, 0); + if (BN_set_bit(largebase, 0) == 0) + fatal("BN_set_bit: failed"); time(&time_start); @@ -371,8 +376,8 @@ gen_candidates(FILE *out, int memory, int power, BIGNUM *start) * fencepost errors, the last pass is skipped. */ for (smallbase = TINY_NUMBER + 3; - smallbase < (SMALL_MAXIMUM - TINY_NUMBER); - smallbase += TINY_NUMBER) { + smallbase < (SMALL_MAXIMUM - TINY_NUMBER); + smallbase += TINY_NUMBER) { for (i = 0; i < tinybits; i++) { if (BIT_TEST(TinySieve, i)) continue; /* 2*i+3 is composite */ @@ -425,8 +430,10 @@ gen_candidates(FILE *out, int memory, int power, BIGNUM *start) continue; /* Definitely composite, skip */ debug2("test q = largebase+%u", 2 * j); - BN_set_word(q, 2 * j); - BN_add(q, q, largebase); + if (BN_set_word(q, 2 * j) == 0) + fatal("BN_set_word failed"); + if (BN_add(q, q, largebase) == 0) + fatal("BN_add failed"); if (qfileout(out, QTYPE_SOPHIE_GERMAIN, QTEST_SIEVE, largetries, (power - 1) /* MSB */, (0), q) == -1) { ret = -1; @@ -471,9 +478,12 @@ prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted) time(&time_start); - p = BN_new(); - q = BN_new(); - ctx = BN_CTX_new(); + if ((p = BN_new()) == NULL) + fatal("BN_new failed"); + if ((q = BN_new()) == NULL) + fatal("BN_new failed"); + if ((ctx = BN_CTX_new()) == NULL) + fatal("BN_CTX_new failed"); debug2("%.24s Final %u Miller-Rabin trials (%x generator)", ctime(&time_start), trials, generator_wanted); @@ -521,23 +531,28 @@ prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted) case QTYPE_SOPHIE_GERMAIN: debug2("%10u: (%u) Sophie-Germain", count_in, in_type); a = q; - BN_hex2bn(&a, cp); + if (BN_hex2bn(&a, cp) == 0) + fatal("BN_hex2bn failed"); /* p = 2*q + 1 */ - BN_lshift(p, q, 1); - BN_add_word(p, 1); + if (BN_lshift(p, q, 1) == 0) + fatal("BN_lshift failed"); + if (BN_add_word(p, 1) == 0) + fatal("BN_add_word failed"); in_size += 1; generator_known = 0; break; case QTYPE_UNSTRUCTURED: case QTYPE_SAFE: - case QTYPE_SCHNOOR: + case QTYPE_SCHNORR: case QTYPE_STRONG: case QTYPE_UNKNOWN: debug2("%10u: (%u)", count_in, in_type); a = p; - BN_hex2bn(&a, cp); + if (BN_hex2bn(&a, cp) == 0) + fatal("BN_hex2bn failed"); /* q = (p-1) / 2 */ - BN_rshift(q, p, 1); + if (BN_rshift(q, p, 1) == 0) + fatal("BN_rshift failed"); break; default: debug2("Unknown prime type"); @@ -548,7 +563,7 @@ prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted) * due to earlier inconsistencies in interpretation, check * the proposed bit size. */ - if (BN_num_bits(p) != (in_size + 1)) { + if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) { debug2("%10u: bit size %u mismatch", count_in, in_size); continue; }