]> andersk Git - gssapi-openssh.git/blame - openssh/openbsd-compat/sys-queue.h
Import of OpenSSH 3.8p1
[gssapi-openssh.git] / openssh / openbsd-compat / sys-queue.h
CommitLineData
cdd66111 1/* OPENBSD ORIGINAL: sys/sys/queue.h */
2
0fff78ff 3/* $OpenBSD: queue.h,v 1.23 2003/06/02 23:28:21 millert Exp $ */
41b2f314 4/* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
5
6/*
7 * Copyright (c) 1991, 1993
8 * The Regents of the University of California. All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
0fff78ff 18 * 3. Neither the name of the University nor the names of its contributors
41b2f314 19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)queue.h 8.5 (Berkeley) 8/20/94
35 */
36
37#ifndef _FAKE_QUEUE_H_
38#define _FAKE_QUEUE_H_
39
40/*
41 * Ignore all <sys/queue.h> since older platforms have broken/incomplete
42 * <sys/queue.h> that are too hard to work around.
43 */
44#undef SLIST_HEAD
45#undef SLIST_HEAD_INITIALIZER
46#undef SLIST_ENTRY
47#undef SLIST_FIRST
48#undef SLIST_END
49#undef SLIST_EMPTY
50#undef SLIST_NEXT
51#undef SLIST_FOREACH
52#undef SLIST_INIT
53#undef SLIST_INSERT_AFTER
54#undef SLIST_INSERT_HEAD
55#undef SLIST_REMOVE_HEAD
56#undef SLIST_REMOVE
57#undef LIST_HEAD
58#undef LIST_HEAD_INITIALIZER
59#undef LIST_ENTRY
60#undef LIST_FIRST
61#undef LIST_END
62#undef LIST_EMPTY
63#undef LIST_NEXT
64#undef LIST_FOREACH
65#undef LIST_INIT
66#undef LIST_INSERT_AFTER
67#undef LIST_INSERT_BEFORE
68#undef LIST_INSERT_HEAD
69#undef LIST_REMOVE
70#undef LIST_REPLACE
71#undef SIMPLEQ_HEAD
72#undef SIMPLEQ_HEAD_INITIALIZER
73#undef SIMPLEQ_ENTRY
74#undef SIMPLEQ_FIRST
75#undef SIMPLEQ_END
76#undef SIMPLEQ_EMPTY
77#undef SIMPLEQ_NEXT
78#undef SIMPLEQ_FOREACH
79#undef SIMPLEQ_INIT
80#undef SIMPLEQ_INSERT_HEAD
81#undef SIMPLEQ_INSERT_TAIL
82#undef SIMPLEQ_INSERT_AFTER
83#undef SIMPLEQ_REMOVE_HEAD
84#undef TAILQ_HEAD
85#undef TAILQ_HEAD_INITIALIZER
86#undef TAILQ_ENTRY
87#undef TAILQ_FIRST
88#undef TAILQ_END
89#undef TAILQ_NEXT
90#undef TAILQ_LAST
91#undef TAILQ_PREV
92#undef TAILQ_EMPTY
93#undef TAILQ_FOREACH
94#undef TAILQ_FOREACH_REVERSE
95#undef TAILQ_INIT
96#undef TAILQ_INSERT_HEAD
97#undef TAILQ_INSERT_TAIL
98#undef TAILQ_INSERT_AFTER
99#undef TAILQ_INSERT_BEFORE
100#undef TAILQ_REMOVE
101#undef TAILQ_REPLACE
102#undef CIRCLEQ_HEAD
103#undef CIRCLEQ_HEAD_INITIALIZER
104#undef CIRCLEQ_ENTRY
105#undef CIRCLEQ_FIRST
106#undef CIRCLEQ_LAST
107#undef CIRCLEQ_END
108#undef CIRCLEQ_NEXT
109#undef CIRCLEQ_PREV
110#undef CIRCLEQ_EMPTY
111#undef CIRCLEQ_FOREACH
112#undef CIRCLEQ_FOREACH_REVERSE
113#undef CIRCLEQ_INIT
114#undef CIRCLEQ_INSERT_AFTER
115#undef CIRCLEQ_INSERT_BEFORE
116#undef CIRCLEQ_INSERT_HEAD
117#undef CIRCLEQ_INSERT_TAIL
118#undef CIRCLEQ_REMOVE
119#undef CIRCLEQ_REPLACE
120
121/*
122 * This file defines five types of data structures: singly-linked lists,
123 * lists, simple queues, tail queues, and circular queues.
124 *
125 *
126 * A singly-linked list is headed by a single forward pointer. The elements
127 * are singly linked for minimum space and pointer manipulation overhead at
128 * the expense of O(n) removal for arbitrary elements. New elements can be
129 * added to the list after an existing element or at the head of the list.
130 * Elements being removed from the head of the list should use the explicit
131 * macro for this purpose for optimum efficiency. A singly-linked list may
132 * only be traversed in the forward direction. Singly-linked lists are ideal
133 * for applications with large datasets and few or no removals or for
134 * implementing a LIFO queue.
135 *
136 * A list is headed by a single forward pointer (or an array of forward
137 * pointers for a hash table header). The elements are doubly linked
138 * so that an arbitrary element can be removed without a need to
139 * traverse the list. New elements can be added to the list before
140 * or after an existing element or at the head of the list. A list
141 * may only be traversed in the forward direction.
142 *
143 * A simple queue is headed by a pair of pointers, one the head of the
144 * list and the other to the tail of the list. The elements are singly
145 * linked to save space, so elements can only be removed from the
146 * head of the list. New elements can be added to the list before or after
147 * an existing element, at the head of the list, or at the end of the
148 * list. A simple queue may only be traversed in the forward direction.
149 *
150 * A tail queue is headed by a pair of pointers, one to the head of the
151 * list and the other to the tail of the list. The elements are doubly
152 * linked so that an arbitrary element can be removed without a need to
153 * traverse the list. New elements can be added to the list before or
154 * after an existing element, at the head of the list, or at the end of
155 * the list. A tail queue may be traversed in either direction.
156 *
157 * A circle queue is headed by a pair of pointers, one to the head of the
158 * list and the other to the tail of the list. The elements are doubly
159 * linked so that an arbitrary element can be removed without a need to
160 * traverse the list. New elements can be added to the list before or after
161 * an existing element, at the head of the list, or at the end of the list.
162 * A circle queue may be traversed in either direction, but has a more
163 * complex end of list detection.
164 *
165 * For details on the use of these macros, see the queue(3) manual page.
166 */
167
168/*
169 * Singly-linked List definitions.
170 */
171#define SLIST_HEAD(name, type) \
172struct name { \
173 struct type *slh_first; /* first element */ \
174}
175
176#define SLIST_HEAD_INITIALIZER(head) \
177 { NULL }
178
179#define SLIST_ENTRY(type) \
180struct { \
181 struct type *sle_next; /* next element */ \
182}
183
184/*
185 * Singly-linked List access methods.
186 */
187#define SLIST_FIRST(head) ((head)->slh_first)
188#define SLIST_END(head) NULL
189#define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
190#define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
191
192#define SLIST_FOREACH(var, head, field) \
193 for((var) = SLIST_FIRST(head); \
194 (var) != SLIST_END(head); \
195 (var) = SLIST_NEXT(var, field))
196
197/*
198 * Singly-linked List functions.
199 */
200#define SLIST_INIT(head) { \
201 SLIST_FIRST(head) = SLIST_END(head); \
202}
203
204#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
205 (elm)->field.sle_next = (slistelm)->field.sle_next; \
206 (slistelm)->field.sle_next = (elm); \
207} while (0)
208
209#define SLIST_INSERT_HEAD(head, elm, field) do { \
210 (elm)->field.sle_next = (head)->slh_first; \
211 (head)->slh_first = (elm); \
212} while (0)
213
214#define SLIST_REMOVE_HEAD(head, field) do { \
215 (head)->slh_first = (head)->slh_first->field.sle_next; \
216} while (0)
217
218#define SLIST_REMOVE(head, elm, type, field) do { \
219 if ((head)->slh_first == (elm)) { \
220 SLIST_REMOVE_HEAD((head), field); \
221 } \
222 else { \
223 struct type *curelm = (head)->slh_first; \
224 while( curelm->field.sle_next != (elm) ) \
225 curelm = curelm->field.sle_next; \
226 curelm->field.sle_next = \
227 curelm->field.sle_next->field.sle_next; \
228 } \
229} while (0)
230
231/*
232 * List definitions.
233 */
234#define LIST_HEAD(name, type) \
235struct name { \
236 struct type *lh_first; /* first element */ \
237}
238
239#define LIST_HEAD_INITIALIZER(head) \
240 { NULL }
241
242#define LIST_ENTRY(type) \
243struct { \
244 struct type *le_next; /* next element */ \
245 struct type **le_prev; /* address of previous next element */ \
246}
247
248/*
249 * List access methods
250 */
251#define LIST_FIRST(head) ((head)->lh_first)
252#define LIST_END(head) NULL
253#define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
254#define LIST_NEXT(elm, field) ((elm)->field.le_next)
255
256#define LIST_FOREACH(var, head, field) \
257 for((var) = LIST_FIRST(head); \
258 (var)!= LIST_END(head); \
259 (var) = LIST_NEXT(var, field))
260
261/*
262 * List functions.
263 */
264#define LIST_INIT(head) do { \
265 LIST_FIRST(head) = LIST_END(head); \
266} while (0)
267
268#define LIST_INSERT_AFTER(listelm, elm, field) do { \
269 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
270 (listelm)->field.le_next->field.le_prev = \
271 &(elm)->field.le_next; \
272 (listelm)->field.le_next = (elm); \
273 (elm)->field.le_prev = &(listelm)->field.le_next; \
274} while (0)
275
276#define LIST_INSERT_BEFORE(listelm, elm, field) do { \
277 (elm)->field.le_prev = (listelm)->field.le_prev; \
278 (elm)->field.le_next = (listelm); \
279 *(listelm)->field.le_prev = (elm); \
280 (listelm)->field.le_prev = &(elm)->field.le_next; \
281} while (0)
282
283#define LIST_INSERT_HEAD(head, elm, field) do { \
284 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
285 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
286 (head)->lh_first = (elm); \
287 (elm)->field.le_prev = &(head)->lh_first; \
288} while (0)
289
290#define LIST_REMOVE(elm, field) do { \
291 if ((elm)->field.le_next != NULL) \
292 (elm)->field.le_next->field.le_prev = \
293 (elm)->field.le_prev; \
294 *(elm)->field.le_prev = (elm)->field.le_next; \
295} while (0)
296
297#define LIST_REPLACE(elm, elm2, field) do { \
298 if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
299 (elm2)->field.le_next->field.le_prev = \
300 &(elm2)->field.le_next; \
301 (elm2)->field.le_prev = (elm)->field.le_prev; \
302 *(elm2)->field.le_prev = (elm2); \
303} while (0)
304
305/*
306 * Simple queue definitions.
307 */
308#define SIMPLEQ_HEAD(name, type) \
309struct name { \
310 struct type *sqh_first; /* first element */ \
311 struct type **sqh_last; /* addr of last next element */ \
312}
313
314#define SIMPLEQ_HEAD_INITIALIZER(head) \
315 { NULL, &(head).sqh_first }
316
317#define SIMPLEQ_ENTRY(type) \
318struct { \
319 struct type *sqe_next; /* next element */ \
320}
321
322/*
323 * Simple queue access methods.
324 */
325#define SIMPLEQ_FIRST(head) ((head)->sqh_first)
326#define SIMPLEQ_END(head) NULL
327#define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
328#define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
329
330#define SIMPLEQ_FOREACH(var, head, field) \
331 for((var) = SIMPLEQ_FIRST(head); \
332 (var) != SIMPLEQ_END(head); \
333 (var) = SIMPLEQ_NEXT(var, field))
334
335/*
336 * Simple queue functions.
337 */
338#define SIMPLEQ_INIT(head) do { \
339 (head)->sqh_first = NULL; \
340 (head)->sqh_last = &(head)->sqh_first; \
341} while (0)
342
343#define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
344 if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
345 (head)->sqh_last = &(elm)->field.sqe_next; \
346 (head)->sqh_first = (elm); \
347} while (0)
348
349#define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
350 (elm)->field.sqe_next = NULL; \
351 *(head)->sqh_last = (elm); \
352 (head)->sqh_last = &(elm)->field.sqe_next; \
353} while (0)
354
355#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
356 if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
357 (head)->sqh_last = &(elm)->field.sqe_next; \
358 (listelm)->field.sqe_next = (elm); \
359} while (0)
360
361#define SIMPLEQ_REMOVE_HEAD(head, elm, field) do { \
362 if (((head)->sqh_first = (elm)->field.sqe_next) == NULL) \
363 (head)->sqh_last = &(head)->sqh_first; \
364} while (0)
365
366/*
367 * Tail queue definitions.
368 */
369#define TAILQ_HEAD(name, type) \
370struct name { \
371 struct type *tqh_first; /* first element */ \
372 struct type **tqh_last; /* addr of last next element */ \
373}
374
375#define TAILQ_HEAD_INITIALIZER(head) \
376 { NULL, &(head).tqh_first }
377
378#define TAILQ_ENTRY(type) \
379struct { \
380 struct type *tqe_next; /* next element */ \
381 struct type **tqe_prev; /* address of previous next element */ \
382}
383
384/*
385 * tail queue access methods
386 */
387#define TAILQ_FIRST(head) ((head)->tqh_first)
388#define TAILQ_END(head) NULL
389#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
390#define TAILQ_LAST(head, headname) \
391 (*(((struct headname *)((head)->tqh_last))->tqh_last))
392/* XXX */
393#define TAILQ_PREV(elm, headname, field) \
394 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
395#define TAILQ_EMPTY(head) \
396 (TAILQ_FIRST(head) == TAILQ_END(head))
397
398#define TAILQ_FOREACH(var, head, field) \
399 for((var) = TAILQ_FIRST(head); \
400 (var) != TAILQ_END(head); \
401 (var) = TAILQ_NEXT(var, field))
402
403#define TAILQ_FOREACH_REVERSE(var, head, field, headname) \
404 for((var) = TAILQ_LAST(head, headname); \
405 (var) != TAILQ_END(head); \
406 (var) = TAILQ_PREV(var, headname, field))
407
408/*
409 * Tail queue functions.
410 */
411#define TAILQ_INIT(head) do { \
412 (head)->tqh_first = NULL; \
413 (head)->tqh_last = &(head)->tqh_first; \
414} while (0)
415
416#define TAILQ_INSERT_HEAD(head, elm, field) do { \
417 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
418 (head)->tqh_first->field.tqe_prev = \
419 &(elm)->field.tqe_next; \
420 else \
421 (head)->tqh_last = &(elm)->field.tqe_next; \
422 (head)->tqh_first = (elm); \
423 (elm)->field.tqe_prev = &(head)->tqh_first; \
424} while (0)
425
426#define TAILQ_INSERT_TAIL(head, elm, field) do { \
427 (elm)->field.tqe_next = NULL; \
428 (elm)->field.tqe_prev = (head)->tqh_last; \
429 *(head)->tqh_last = (elm); \
430 (head)->tqh_last = &(elm)->field.tqe_next; \
431} while (0)
432
433#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
434 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
435 (elm)->field.tqe_next->field.tqe_prev = \
436 &(elm)->field.tqe_next; \
437 else \
438 (head)->tqh_last = &(elm)->field.tqe_next; \
439 (listelm)->field.tqe_next = (elm); \
440 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
441} while (0)
442
443#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
444 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
445 (elm)->field.tqe_next = (listelm); \
446 *(listelm)->field.tqe_prev = (elm); \
447 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
448} while (0)
449
450#define TAILQ_REMOVE(head, elm, field) do { \
451 if (((elm)->field.tqe_next) != NULL) \
452 (elm)->field.tqe_next->field.tqe_prev = \
453 (elm)->field.tqe_prev; \
454 else \
455 (head)->tqh_last = (elm)->field.tqe_prev; \
456 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
457} while (0)
458
459#define TAILQ_REPLACE(head, elm, elm2, field) do { \
460 if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
461 (elm2)->field.tqe_next->field.tqe_prev = \
462 &(elm2)->field.tqe_next; \
463 else \
464 (head)->tqh_last = &(elm2)->field.tqe_next; \
465 (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
466 *(elm2)->field.tqe_prev = (elm2); \
467} while (0)
468
469/*
470 * Circular queue definitions.
471 */
472#define CIRCLEQ_HEAD(name, type) \
473struct name { \
474 struct type *cqh_first; /* first element */ \
475 struct type *cqh_last; /* last element */ \
476}
477
478#define CIRCLEQ_HEAD_INITIALIZER(head) \
479 { CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
480
481#define CIRCLEQ_ENTRY(type) \
482struct { \
483 struct type *cqe_next; /* next element */ \
484 struct type *cqe_prev; /* previous element */ \
485}
486
487/*
488 * Circular queue access methods
489 */
490#define CIRCLEQ_FIRST(head) ((head)->cqh_first)
491#define CIRCLEQ_LAST(head) ((head)->cqh_last)
492#define CIRCLEQ_END(head) ((void *)(head))
493#define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
494#define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
495#define CIRCLEQ_EMPTY(head) \
496 (CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
497
498#define CIRCLEQ_FOREACH(var, head, field) \
499 for((var) = CIRCLEQ_FIRST(head); \
500 (var) != CIRCLEQ_END(head); \
501 (var) = CIRCLEQ_NEXT(var, field))
502
503#define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
504 for((var) = CIRCLEQ_LAST(head); \
505 (var) != CIRCLEQ_END(head); \
506 (var) = CIRCLEQ_PREV(var, field))
507
508/*
509 * Circular queue functions.
510 */
511#define CIRCLEQ_INIT(head) do { \
512 (head)->cqh_first = CIRCLEQ_END(head); \
513 (head)->cqh_last = CIRCLEQ_END(head); \
514} while (0)
515
516#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
517 (elm)->field.cqe_next = (listelm)->field.cqe_next; \
518 (elm)->field.cqe_prev = (listelm); \
519 if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \
520 (head)->cqh_last = (elm); \
521 else \
522 (listelm)->field.cqe_next->field.cqe_prev = (elm); \
523 (listelm)->field.cqe_next = (elm); \
524} while (0)
525
526#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
527 (elm)->field.cqe_next = (listelm); \
528 (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
529 if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \
530 (head)->cqh_first = (elm); \
531 else \
532 (listelm)->field.cqe_prev->field.cqe_next = (elm); \
533 (listelm)->field.cqe_prev = (elm); \
534} while (0)
535
536#define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
537 (elm)->field.cqe_next = (head)->cqh_first; \
538 (elm)->field.cqe_prev = CIRCLEQ_END(head); \
539 if ((head)->cqh_last == CIRCLEQ_END(head)) \
540 (head)->cqh_last = (elm); \
541 else \
542 (head)->cqh_first->field.cqe_prev = (elm); \
543 (head)->cqh_first = (elm); \
544} while (0)
545
546#define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
547 (elm)->field.cqe_next = CIRCLEQ_END(head); \
548 (elm)->field.cqe_prev = (head)->cqh_last; \
549 if ((head)->cqh_first == CIRCLEQ_END(head)) \
550 (head)->cqh_first = (elm); \
551 else \
552 (head)->cqh_last->field.cqe_next = (elm); \
553 (head)->cqh_last = (elm); \
554} while (0)
555
556#define CIRCLEQ_REMOVE(head, elm, field) do { \
557 if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \
558 (head)->cqh_last = (elm)->field.cqe_prev; \
559 else \
560 (elm)->field.cqe_next->field.cqe_prev = \
561 (elm)->field.cqe_prev; \
562 if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \
563 (head)->cqh_first = (elm)->field.cqe_next; \
564 else \
565 (elm)->field.cqe_prev->field.cqe_next = \
566 (elm)->field.cqe_next; \
567} while (0)
568
569#define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
570 if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
571 CIRCLEQ_END(head)) \
572 (head).cqh_last = (elm2); \
573 else \
574 (elm2)->field.cqe_next->field.cqe_prev = (elm2); \
575 if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
576 CIRCLEQ_END(head)) \
577 (head).cqh_first = (elm2); \
578 else \
579 (elm2)->field.cqe_prev->field.cqe_next = (elm2); \
580} while (0)
581
582#endif /* !_FAKE_QUEUE_H_ */
This page took 0.208233 seconds and 5 git commands to generate.